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Abstract. Segmentation approaches based on sequential Monte Carlo
Methods deliver promising results for the localization and delineation of
anatomical structures in medical images. Also known as Shape Particle
Filters, they are used for the segmentation of human vertebræ, lungs and
hearts, and are especially well suited to cope with the high levels of noise
encountered in MR data and overlapping structures with ambiguous ap-
pearance in radiographs.
They require a region template of the appearance features which allow to
estimate the confidence in the hypotheses generated during the search.
Currently these templates are created manually, which introduces a bias,
and leads to particularly sub-optimal results in complex anatomy.
In this work we propose a Differential Evolution based Shape Particle
Filter segmentation scheme where the optimal distribution and number
of template regions is derived automatically from a set of training images.
The method adapts to complex data and finds consistent features in the
training examples. Experiments on two medical data sets (radiographs
of metacarpal bones and MRI slices of hearts) show that this yields
considerably higher accuracy with fewer outliers.

1 Introduction

Motivation Statistical methods such as sequential Monte Carlo Methods were
proposed for detection, segmentation [1, 2, 3, 4, 5] and tracking [6, 7, 8] of ob-
jects. A similar approach, called Shape Particle Filters was introduced in [2, 3]
for the segmentation of vertebræ, lungs and hearts. In Fig. 1 an illustration of
a Shape Particle Filter approach is depicted: Based on a global shape model
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Fig. 1. Flowchart of a Shape Particle Filter. Landmarks are obtained from manually
annotated contours, forming the basis for the generated Shape Model. A region map
based on the shape models mean shape is generated that in turn is used to determine
image region features. Test images are then classified yielding probability maps that
are used in the final image segmentation step.

a class template or labeling map for the following feature extraction is defined
according to the respective medical object of interest (e.g. interior of the contour
and one or more regions within a certain border on the outside). The number
and location of these regions however is currently defined manually. Using these
regions and their corresponding distributions in the feature space particle fil-
tering approaches are used to estimate the most probable point in the shape
parameter space (corresponding to a segmentation of the image) for a given test
image. This is achieved by sampling from the image features according to shape
hypothesis and computing corresponding confidence values / posterior probabil-
ities. Estimating this posterior probabilities over the parameter space allows to
find values of maximum confidence, i.e. to optimize the fit of the model to the
object in the test image.

Particle Filters Particle filtering was introduced with the intention to imple-
ment recursive Bayesian filters [9]. It is also known as Sampling Importance
Resampling (SIR), Bayesian bootstrap filter or sequential Monte Carlo Methods.
In contrast to other filters that use Monte Carlo Methods to get estimates of the
mean and covariance of the posterior, particle filters approximate the complete
posterior. They aim to approximate posterior densities using swarms of points
(so called particles) in a sample space. A weight is assigned to each particle and
using a discrete distribution of the particles the posterior distribution can be
approximated. This results in particle probabilities which are proportional to
the particle weights. Several algorithms exist differing mainly in the way how
the particle swarms evolve and adapt to input data [10].

Contribution In this paper we propose an approach to automatically select the
subregions of the object required to compute the expected feature distributions
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Fig. 2. Manually predefined region maps (a,c) with five regions and examples of au-
tomatically generated region maps (b,d) with 17 (8 inner and 9 outer) regions for the
metacarpal bones and the hearts.

and the confidences for each shape hypothesis. The automatic region map is
based on the shape of the objects to be classified. Two areas are defined, the
interior of the shape and to constrain the representation to a neighborhood of
the object a corridor on the outside of the shape. The subregions are estimated
for each of the two areas by clustering in feature space.

The optimal number and location of inner and outer regions (clusters) is
found by leave one out cross validation. A comparison of manually predefined
region maps and examples of automatically generated region maps for each of
the processed data sets is shown in Fig. 2. This has several advantages over the
manual choice of template regions: the main feature is a partitioning adapted to
complex but consistent anatomical structures, which hold information relevant
to the segmentation process, but cannot be determined optimally by manual
segmentation. It removes bias and finally it opens the possibility of autonomous
learning approaches, that do not require manual supervision on a training pop-
ulation.

We evaluate our method on radiographs of human metacarpal bones and
MRI slices of human hearts. The results show the drastically improved search
results compared to a manual region definition, with both higher accuracy and
a smaller number of outliers.

Paper Structure Sec. 2 gives a description of the fundamental methods of the
proposed approach, namely the concept of Shape Models 2.1, Differential Evolu-
tion 2.2 and the resulting Shape Particle Filter 2.3. Sec. 3 details the automatic
region estimation and the experiments and results are presented in Sec. 4 followed
by the conclusion and an outlook in Sec. 5.

2 Methods

Shape Particle Filters rely on a model of the objects’ shapes and a means of
estimating the posterior distribution of parameter estimates given an input im-



age. These are estimated by means of an Markov Chain Monte Carlo (MCMC)
method, where Differential Evolution MCMC is used in this work.

2.1 Shape Models

Objects in images can be represented using statistical models of the objects’
shape. A Point Distribution Model (PDM) [11] constructs a shape model by
computing the significant eigenmodes of a shape population, e. g. assuming a
multivariate Gaussian distribution of the shape parameters.

These shapes consist of a set of n points or landmarks. The points can
have any dimension, but throughout this paper they are considered to be 2-
dimensional. Before modeling the non-rigid shape variation we normalize for
similarity transformations, i. e. translation, rotation and scaling (the pose). Thus
the parameters to define a unique shape in an image are shape and pose param-
eters.

Using this shape information the goal is to build models which provide the
abilities to represent shapes and to generalize to new shapes within the distri-
bution of the shapes in a predefined training set.

The first step to create a training set for shape model generation is to define
landmarks for several objects. To obtain landmarks for a shape usually a human
expert annotates several images containing the corresponding object. Landmarks
are derived from this manually annotated image contours by applying Minimum
Description Length (MDL) [12]. Then a vector vi for all i ∈ 1, ..., NS annotated
shapes for d-dimensional landmarks is defined as

vi = (d11 , ..., d1d
, d21 , ..., d2d

, ..., dn1 , ...dnd
) (1)

The training set is then aligned using Procrustes Analysis, which minimizes∑
|vi − v̄|2, where vi is the ith point position vector and v̄ is the mean of all

vectors.
To be able to generate new shapes out of the training set a parameterized

model v = M(b) of the distribution of the NS point position vectors vi is de-
fined. b is a vector containing the model parameters (Eq. 3). With the help of
this model it is possible to generate new shapes v and to estimate the distribu-
tion p(v) of these new vectors. The model is finally built by applying Principle
Component Analysis (PCA) to the data, yielding eigenvectors e1, . . . , ee with
e = min(nd,NS). Using e∗ < e eigenvectors (thereby neglecting the modes with
small variance, which are considered to model noise only) any shape v within
the subspace spanned by the training set can be represented by:

v ≈ v̄ + Fb (2)

where F = (e1, ..., ee∗) is the basis of the eigenspace and b is a vector of length
e∗ which defines the parameters for the deformable model [13]:

b = FT (v − v̄) (3)



The resulting model F represents the shape variation of the modeled objects
utilizing a single parameter vector b. Each element of b controls one mode of
shape variation, with the first modes being responsible for the highest variation,
in descending order.

To ensure that the generated shapes are similar to those in the training set
the parameter vectors are always limited to the range ±3

√
λi, where λi is the

eigenvalue and also the variance of the ith parameter bi in the training set.
In addition to these modes the transformations translation, scaling and ro-

tation need to be taken into account. Therefore a new linear parameter vector
t = (sx, sy, tx, ty)T is introduced, controlling rotation θ, scaling s and translation
(tx, ty), with sx = s cos θ − 1 and sy = s sin θ.

Combining the parameter vector of the PCA b and the parameter vector for
translation, rotation and scaling t results in the combined parameter vector

c = (bT , tT ). (4)

2.2 Differential Evolution

We approach particle filtering using the DE-MCMC formulation introduced by
[14], that uses Differential Evolution (DE) [15] for the sampling step in sequential
Monte Carlo Methods. DE is a genetic algorithm and aims to optimize functions
based on populations in parameter space, which in our case is the subspace
(restricted to plausible models) of the model parameters c.

DE is a parallel direct search method that uses Nx d-dimensional parameter
vectors xi (i = 1, ..., Nx) (i.e. Nx d-dimensional Markov chains [14]) as members
of a population Xg for each generation g.

Starting with parameter vectors randomly drawn from the training distri-
bution at generation g = 1, during each generation (g + 1), Nx new parameter
vectors / shape hypotheses xh are then generated by adding the weighted dif-
ference vector between two population members to a third member

xh = x1 + γ(x2 − x3), (5)

where x1,x2,x3 are randomly selected without replacement from the population
Xg and γ is a constant factor weighting the differential variation x2 − x3 (γ =
0.85 in our experiments). If the confidence π(xh) in hypothesis xh is higher
than π(x1), xh replaces x1 in generation Xg+1, otherwise x1 ∈ Xg+1. After
I iterations ensuring convergence (200 in our experiments) the hypothesis /
population member x∗ with the highest confidence is considered to represent
the best solution.

To guarantee a detailed balance of proposal and acceptance with respect to
the fitness function π(.) Eq. 5 is modified to

xh = x1 + γ(x2 − x3) + k (6)

where k is drawn from the normal distribution k ∼ N(0,a) with variance a
small compared to the variance of population Xg [14].



2.3 Shape Particle Filter

Shape Particle Filters as proposed in [2, 3] contain the following steps. First
the mean shape is derived from hand annotated training images. Then a region
map is manually defined on this mean shape, representing regions which are
presumed to be distinct and of significance to the segmentation process (see
below). An example of these manually defined regions can be seen in Fig. 2(a)
and 2(c). A small corridor (20 pixel for the metacarpal bones and 10 pixel for
the hearts) is created defining the region around the shape. This area outside
the shape contains information about surrounding neighboring structures that
is taken into account during classification.

Local image descriptors (e.g. gaussian derivative filters, Gabor filters [16])
are computed for all training images. The region map is warped back to each
training shape using Thin Plate Spline Warping (TPS) [17], so that for each
region a distribution of the corresponding descriptors/features can be estimated
by sampling. The shape model, the region map and the learnt feature descriptors
for the regions thus constitute the prior knowledge of Shape Particle Filters.

During search on a test image, a k-NN classifier is used to classify the image’s
pixels j ∈ 1 . . . NJ resulting in one region probability map P (j | l) per region l.
The actual segmentation step uses this probabilities to optimize a fitness function
encoding the belief in the segmentation corresponding to a given shape model
parameter vector.

This optimization is performed using particle filtering by importance resam-
pling processes [2, 3], estimating the posterior distribution of the shapes given
the image by means of the following fitness function (Eq. 7). Initially, a ran-
dom set of shapes, the particles, represented by shape parameter vectors ci are
generated according to the distribution of the prior shape model.

The region map is deformed according to the shape parameters and for each
region the cumulative probability is computed by summing up the probabilities
from the corresponding probability map.

By this, a weight can be applied to each particle considering their likelihood,

π(ci) =

∑L
l=1

∑n
j=1 P (j | l)
L

, (7)

where L is the number of regions, n is the number of pixels in the region map
and P (j | l) is the probability of pixel j belonging to region l. New particles are
generated from the current set of particles by weighting them with their likeli-
hood π(ci) and randomly sampling in parameter space around these particles
with probabilities proportional to the weights. While this importance resampling
process is repeated the initial sparse particles evolve into a distribution with high
density around the most likely shapes.
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Fig. 3. Manually predefined and automatically generated region maps for the
metacarpal bones (a),(b) and the hearts (c),(d). The automatic results show how the
Gabor features are clustered into regions which are considerably different from the ones
chosen by humans.

3 Automatic region map generation

The manual definition of the region map represents the introduction of a strong
bias, as there is no guarantee that their definition is beneficial or at least suited to
the convergence and accuracy of the optimization scheme. In contrast to previous
approaches we thus propose a method which derived an optimal region map
directly from the training image data. It takes into account the discriminative
power of the computed image features and reflects their distribution in the region
map.

Similar to the approach in Sec. 2.3 an average feature vector fi (Gabor Jets)
is computed for each pixel i within the mean shape (as well as within a border
around the mean shape) from the corresponding features fn

i from each training
image n ∈ 1 . . . NS . The task is now to estimate a sensible partition, i. e. region
map, of the inner and outer/border of the mean shape such that the probabilities
P (j | l) of the image classification using this partition convey information which
makes the particle filter converge at a good segmentation. The number of regions
within the mean shape is denoted by Ninner and the number of regions within
the border by Nborder.

First the feature matrix Fn for each training image is extracted. Then the
mean feature matrix

F̄ =
∑N

n=1 Fn

NS
(8)

is calculated from the individual feature maps after they have been warped
onto the mean shape. The area inside the mean shape is clustered into Ninner

regions and the corridor is clustered into Nborder regions. The resulting region
map with L = Ninner + Nborder regions is for training the classifier and finally
for the segmentation step of the Shape Particle Filter.

To obtain the optimal number of regions leave one out cross validation
(LOOCV) is used. For each test shape all 100 possible region number combi-



k-NN kd-tree + k-NN linear SVM speed gain vs.
k-NN kd-tree + k-NN

Metacarpal bones 641.4 363.8 70.5 9.1x 5.2x
Hearts 239.8 134.8 19.9 12.1x 6.8x

Table 1. Mean classification speed over 10 runs for one test image in seconds for the
k-NN, the kd-tree + k-NN and the linear SVM. In the rightmost column the speedup
achieved by using SVMs compared to the other classification algorithms is shown (SVM
times faster than k-NN and kd-tree + k-NN).

(a) (b)

Fig. 4. Example images of the metacarpal bones (a) and hearts (b) data set with both
ground truth and segmentation result. The objects were both automatically localized
in the image and delineated.

nations (Ninner ×Nborder where Ninner, Nborder ∈ 1, . . . , 10) are generated and
the segmentation results are computed. By comparing the segmentation results
for each region pair and selecting those with the minimal landmark error to
ground truth, the optimal number of regions for the region map is determined.
Examples of these automatic region maps and manual region maps are shown in
Fig. 3.

During the segmentation process the pixels of the target test image are clas-
sified using a linear Support Vector Machine (SVM [18, 19, 20, 21]), yielding
probabilities for each pixel for belonging to the L regions. By using linear SVMs
a major speed up compared to a simple k-Nearest Neighbors (k-NN) approach
as well as compared to k-NN in combination with a kd-tree [22] based distance
computation could be achieved (see Tab. 1).

4 Experiments

In this section the experimental setup and results, as well as a discussion of the
proposed results are presented.



(a) metacarpal bones (b) hearts

Fig. 5. Visualization of the mean landmark error for all evaluated combinations of
region numbers over three LOOCV runs for the metacarpal bones (a) and the hearts
(b). As can be expected, using a too small number of regions results in poor results as
the resulting region probability estimates do not convey enough geometric information
for the optimization.

Setup Evaluation was performed on radiographs of metacarpal bones and on
MRI slices of the heart. The shapes in the data sets were annotated manually
forming the ground truth. For each data set and parameter combination 3NS

segmentation runs were performed, i.e. three full leave-one-out cross validations.
For the first experiment manually predefined region maps and for the second
automatically generated region maps were used as presented in Sec. 3. A SVM
with linear kernel was trained for the classification task. The decision for a
linear kernel was made to achieve a tradeoff between computational performance
and classification result quality. Furthermore the SVM was used to compute
probability estimates instead of definite class labels as required for the particle
filter segmentation. To eliminate all other factors, the identical optimization
scheme using Differential Evolution was used for both experiments, such that
the results illustrate the influence of manual vs. automatic region definition only.
For each resulting segmentation (see Sec. 2) the mean euclidean distance (mean
landmark error) to the ground truth was calculated.

The data sets used for evaluation were 1) 15 radiographs of human metacarpal
bones with the resolution of approximately 500 × 400 pixels each. 2) 14 short-
axis, end-diastolic cardiac MRI slices of the human heart with the resolution of
256 × 256 pixels with manually placed landmarks on the epicardial and endo-
cardial contours [23]. Example images for both data sets including ground truth
and exemplary segmentation results are shown in Fig. 4.

Results In the comparison of the results that were generated using the man-
ual and automatic region maps the main focus was on the landmark error. As
mentioned above the automatic region map leading to the minimal landmark
error was obtained using LOOCV over all region combinations. The resulting
mean landmark errors for all region pairs of the respective data set are visual-



median mean std

Metacarpal bones manual 10.12 12.51 9.88
auto 4.96 7.21 6.92

Hearts manual 5.80 8.96 11.26
auto 4.36 5.10 3.59

Table 2. Resulting median, mean and standard deviation of the landmark error in
pixel for the metacarpal bones with 12 (5 inner, 7 border) regions and for the hearts
with 18 (9 inner, 9 border) regions in the auto region map (our approach) compared
to the results obtained using the manually defined region map. Note how the accuracy
of the resulting segmentation is considerably increased.

ized in Fig. 5. It can be observed that the results for the automatic regions show
that both the number and location of the manual regions are not sufficient to
capture the spacial feature distribution in the images. In fact for both data sets
good segmentation results were achieved with region combinations from 5 − 9
inner and border regions.

In Fig. 6 boxplots of the resulting landmark errors for all four distinctive runs
(manual vs. automatic region map each for the metacarpal bones and the hearts)
are shown. For the metacarpal bones a auto region map with 5 inner and 7 border
regions and for the hearts a region map with 9 inner and 9 border regions led
to the best segmentation results and therefore to the minimal landmark error.
Therefore the following key values in pixel for the different data sets could be
achieved: The median of the landmark error for the metacarpal bones could
be reduced from 10.12 to 4.96 and for the hearts from 5.8 to 4.36. The mean
landmark error did also decrease for the metacarpal bones from 12.51 to 7.21
and for the hearts from 8.96 to 5.10. The standard deviation of the landmark
error for the metacarpal bones was reduced from 9.88 to 6.92 and for the hearts
from 11.26 to 3.59. A summary of these values is shown in Table 2.

Discussion The quality of the generated results depends on four major factors
besides the used region map. These are the image quality of the used input data
(that in turn influences the extracted image features), overlaps of or no space be-
tween nearby similar structures, the accuracy of the manually annotated ground
truth as well as the accuracy of the used image classification scheme. Input
image quality is used as a collective term for the amount of noise, shadows of
overlapping anatomical structures or other distortions due to the image creation
process.

The approach using automatically generated region maps outperformed the
manually defined version especially on images with low input image quality. Due
to the better incorporation of the feature information of the structure and its
surroundings, the auto region maps lead to more precise classifications and there-
fore to more exact segmentation results. Furthermore the manual region maps
could not provide the necessary level of detail to cope with nearby or overlap-
ping similar structures because of the lack of distinctive regions in crucial image
areas. In particular this was observed on the metacarpal bones data set, where
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Fig. 6. Boxplots of the results for the image segmentation using manually and auto-
matically generated region maps for the metacarpal bones and the hearts data sets.
Using the automatic region estimation results in fewer outliers and higher accuracy,
displaying the effectiveness of the proposed approach.

the main problem arose at the distal bone region i.e. the joint area where ex-
treme narrow inter-bone spaces appeared. A selection of different image features
incorporating local structures or even automatically learned features for these
areas could lead to a better segmentation accuracy.

5 Conclusion

In this work we have shown that using manually defined region maps for shape
particle filtering introduces a bias which reduces segmentation accuracy consid-
erably. By using region maps which are automatically derived through clustering
in the feature space the optimal number and distribution of inner and outer re-
gions is found, leading to substantially increased accuracy, as shown on the two
medical data sets. Furthermore, the laborious estimation of a suitable manual
region map trough trial and error is eliminated, paving the way to rapid ap-
plication of Shape Particle Filters in clinical scenarios. Future work will focus
on the investigation of the optimal selection of feature types for specific target
objects. The method’s extension to 3D will allow to use its capability to localize
and segment anatomical structures to further modalities.
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