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Abstract. Optical coherence tomography is a non-invasive method used for the three dimensional in-vivo observa-
tion of the human eye’s retinal layers. In this paper we propose an approach that segments the fine capillary vessels
of the retina in this data. The whole processing is computed in 3D. The method is based on vessel filtering and a
subsequent detection of the individual vessel points by means of a probabilistic kernel. By embedding the points in
a diffusion map based on their structural and spatial properties, we are able to use the joint behavior of the individual
vessel segments, to boost the detection and delineation performance in the highly noisy data. We investigate the
benefit of the probabilistic kernel embedding and report experimental results on real data sets. They demonstrate the
additional benefit of the embedding to accurately segment the vessels.

1 Introduction

Detecting vascular networks is an important issue in medical image analysis. It allows to discover pathologies, that
can have serious consequences; it is important during the planning of interventions, and can serve as a precursor to
the study of the function of certain anatomical structures. Optical Coherence Tomography (OCT) is a modality that
can capture the retina layers of the eye (see Fig. 1). The analysis of the capillary network in the retina is crucial for
the study and diagnosis of diseases, that result in a change of the vascular patterns, and the blood flow. Examples
are diabetic retinopathy, age-related macular degeneration (AMD) or glaucoma (which are the three leading causes of
blindness in the USA [1]). OCT allows for an observation of these very fine networks, but the capillary vessels located
in the ganglion cell layer of the retina are difficult to identify because of the high amount of noise.

In this paper we present an approach to detect capillary vessels in OCT data based on probabilistic kernels reflecting
the mutual relations of vessel points, and a spectral embedding [2] of the local structure description. Due to the high
amount of noise in the OCT data it is necessary to integrate the information of larger vessel segments in the detection
process. We do this by embedding the initial vessel candidate positions in a diffusion map that captures local structure
and mutual spatial relations of the vessel points. The positions in this map can be used to efficiently distinguish between
vessels and background noise.

State of the Art Initial vessel detection filters were proposed in 1998 by [3] and [4]. In both cases a vesselness
value is computed for each point of the volume (or image) by using the eigenvalues and eigenvectors of the Hessian
matrix. Vessel enhancing filters like those proposed in [5] and [6] are also based on the eigenvalue decomposition of
the Hessian matrix. Another promising approach for centerline detection was proposed in [7], and a good overview of
vessel extraction methods is given in [8]. A similar goal to the work presented in this paper is aimed at the segmentation
of vessels in Doppler Optical Coherence Angiography retinal images by [9]. The authors demonstrate a retinal blood
flow quantification with a retinal vessel segmention on 2D retinal vessel images and 2D cross-sectional flow images.
However, they are segmenting vessels with far larger diameter and contrast. To the best of our knowledge, no work
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Figure 1. OCT data of the human retina. (a) B-scan (a set of A-scans which are the vertical lines in the image), and
(b) en-face/top view. We are detecting capillaries in the layers surrounding this one. Note the high amount of noise.
(c) The same layer after standard vessel filtering: vessels are enhanced, but there is still substantial clutter left. This is
dealt with by the embedding approach described in this paper.

exists that tackles the segmentation of the fine capillary vessels in the ganglion cell layer of the human retina which are
about 10 pm in diameter. The challenge is to find the capillary vessels even though the background noise is high and
separates individual vessel segments. Interesting related work is dealing with the segmentation of muscles and muscle
fibres in diffusion tensor data [10].

2 Method outline

Our method is divided into three steps: 1. candidate points for vessels are detected in the volume [6]. 2. A description
of the corresponding local structure, that reflects the vessel is acquired from the OCT data. 2. These candidate points
are embedded into a map based on their mutual spatial configuration and local structure, and the vessels are detected
based on the positions in this map. This last part is described in Sec. 5 and its use in the detection of capillary vessels
is the main contribution of the paper.

3 Detecting vessel candidate points

As a first step, we are detecting candidates for vessels in the OCT data based on a standard filtering introduced in [6]. It
enhances tubular structures based on the eigenvalues of the Hessian matrix at each position. Assuming that the largest
eigenvalue A\ (with A\; > Ay > A3) is close to O for tubular structures, and the remaining two A2, A3 < 0, one can
estimate the vesselness based on A1, and A5. To account for signal strength fluctuations along the vessel axis, in [6]
the two cases A\; > 0 (vessel is interrupted), and A\; < 0 (vessel or blob) are treated differently. Thus the result is
dependent on 3 parameters: o represents the approximate diameter of the vessel to be looked for, a; quantifies the
influence of noise removal in the case of \; < 0, and «, affects the reconstruction of disconnected parts in the case of
A1 > 0, (in general: oy < «). In Fig. 1(c) the result of the vessel enhancement is illustrated for the retina OCT data.
A part of the noise is suppressed by this step, but the local nature of the filtering is not able to differentiate between
components of the retina background structure and the capillaries. We treat the result as vessel candidates, and in the
following two sections we describe how to verify them based on a kernel, that takes both the local structure, and the
mutual spatial relations of the candidates into account.

4 Describing the local vessel structure

Each point resulting from the previous step is considered as a candidate point. To describe the local structure the
structure tensor S (see Eq. 1; I, is the first partial derivative %, etc.) is computed for each candidate point to describe
the local intensity variation. Note that this tensor is guaranteed to be positive definite.
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In tubular structures like the vessel, an eigenvalue decomposition of this tensor results in two eigenvectors perpendicular
to the tube direction associated with large eigenvalues. The third smallest eigenvalue is associated with the direction of
the vessel, and the corresponding small intensity derivative. Based on this structure we now create a local description
that can be interpreted as a probability distribution reflecting the typical neighborhood relations of vessel points. For



Figure 2. Visualizations of the structure tensors and the modified tensors by ellipsoids defined by eigenvectors and
eigenvalues for a section of the retina. Left: the structure tensors indicate the gradient directions orthogonal to the
vessel direction; right: the modified tensors result in ellipsoids that follow the vessel direction, and are used for the
mapping of the vessel points.

each point the distribution indicates the probability to find a neighboring vessel point at a certain position.

On the basis of the structure tensor with eigenvalues \;, ¢ = {1, 2,3} we generate a modified tensor that reflects this
distribution by the altering the eigenvalues Af, i = {1, 2,3} (see Eq. 2, with ¢ < 1 and y << 1) which define a modified
tensor similar to a segmentation term in [11]. A normalization is also conducted to suppress isotropic structure tensors
(see Eq.3). In Fig.2 we illustrate the difference between the structure tensor and the modified structure tensor for a
synthetic data set with a strong tubular structure, and a section of the retina containing a capillary vessel.
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For each candidate point we now have the position and a tensor that describes the local data structure. This is the basis
for the embedding of the vessel points in a map that reflects the probabilities of the vessel candidates to be neighbors
in a vessel structure.

S Finding Vessels in a Mapping based on Probabilistic Kernels

To establish the mapping, we first need a distance between the vessel candidates. We use a distance measure proposed
in [10]. It was originally created to cluster diffusion tensors and fiber tracts in the human skeletal muscles. It uses a
kernel that encompasses spatial localization as well as tensor orientation in such a way that a feature space is computed,
in which those tensors pointing into the same direction and corresponding to locations along this very same direction,
will be closer than those not lying on the same fiber tract. Let us consider two tensors 77 and 75 localized at x; and
xo respectively, and a diffusion time ¢ that determines the size of the kernel - it can be interpreted as the time a particle
in a diffusion process is given to reach a certain location. ¢ acts as a scale parameter, and larger values emphasize
the role of the kernel compared to the role of mutual location. We suppose that ¢ 77 and ¢ T5 encode the covariance
information of Gaussian diffusion probabilities p1 (y|z1,t,771) and pa(y|xa,t,To) at locations x1 and o respectively,
with y being the displacement of the tensor. Following [10], this leads us to consider the expected likelihood kernel
k; between the pairs (T, 1) and (T», x2), which is defined as the expectation of Gaussian probability ps(y|xa,t, T5)
given the probability of py (y|z1,t,T1) and has a closed-form expression (see Eq. 4; for more details the authors refer
to [10]).
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A subsequent mapping into a feature space with chosen dimension according to the kernel Gram matrix enables a
differentiation of the tensors in order to separate tubular structures from background noise. In this feature space, the
points are arranged according to the previously computed distance measure. The points belonging to background
regions collapse into an area closest to the origin compared to the other points. This is due to the fact that leading



eigenvectors of the Gram matrix are expected to represent the relevant information in the data while the eigenvectors
corresponding to the smaller eigenvalues correspond to noisy structures. Therefore background noise is expected
to have a projection close to the origin in the feature space since it lies in the subspace generated by eigenvectors
corresponding to small eigenvalues. Thus, by classifying points in the diffusion map with
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as background (with € determining the distance from the origin), it is possible to differentiate tensors describing tubular
structures from those of background noise: all points in the feature space within a sufficiently short distance to the origin
are eliminated.

6 Results

Setup For our experiments 3 segments of OCT volumes of the human retina, with a size of 15 x 50 x 70, 25 x 70 x 50
and 25 x 60 x 70 were used. For each of the volumes the same procedure was conducted: First, the vessel enhancing
filter was applied (we used the implementation available in MATITK). The according parameters were set as follows:
oc=2,a1=0.9, and o = 1. For the computation of the structure tensor, the parameters were chosen as ¢ = 0.1 and
v = 0.025. The distance matrix was only computed for points that lie within a local range of £5 voxel and whose
first eigenvalue \; > 5. After the mapping into the feature space the points having a distance of ||z — z¢|| < € (for
€ = 2 * 10~ '°) were eliminated. Parameters were the same for all examples.

Results For the validation a standard of reference annotation of the vessels in the volumes was performed by a
medical expert. The error is reported as the wrongly detected vessel points (false positives) and those wrongly classified
as background (false negatives). To evaluate the behaviour of our method, the results of the vessel detector were
compared to our final results after the embedding and the false positives and false negatives were calculated for each of
them. See Tab. 1 for the error rates of each OCT volume. The final results for each dataset are depicted in Fig. 3. The
false positives are reduced significantly, while the number of false negatives increases slightly which is mainly due to
the fact that there is no sharp border between vessel points and background points, leading to a part of annotated vessel
points being omitted. The accurate separation and increase of the sensitivity is subject of ongoing work.

Volume | vessel detector based on [6] | proposed method

FP FN FP FN
OCT1 | 2031 2066 1204 2127
OCT2 | 6507 3017 1233 3029
OCT 3 | 12275 847 1367 862

Table 1. False positives and false negatives for the plain vessel detector and the proposed method.

7 Conclusion and Outlook

We propose a method to automatically detect capillary vessel structures in OCT data. The approach is based on an
embedding of the vessel points in a feature space based on their mutual spatial and structure relations. The vessels
have a diameter of about 10xm and are hard to be distinguished from the background by standard methods. Due to the
high background noise and the small diameter, standard methods to segment the vessels fail. The embedding is able
to integrate vessel information over sets of candidates, and thus exploits the natural structure of the capillary vessels
- elongated tubes - to deal with noisy data, where parts of the vessels are missing or lost in clutter. Future work will
focus on the improvement of the sensitivity of the method, and the further study of the embedding.
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