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Abstract. Functional magnetic resonance imaging group studies rely on
the ability to establish correspondence across individuals. This enables
location specific comparison of functional brain characteristics. Regis-
tration is often based on morphology and does not take variability of
functional localization into account. This can lead to a loss of speci-
ficity, or confounds when studying diseases. In this paper we propose
multi-subject functional registration by manifold alignment via coupled
joint diagonalization. The functional network structure of each subject
is encoded in a diffusion map, where functional relationships are decou-
pled from spatial position. Two-step manifold alignment estimates initial
correspondences between functionally equivalent regions. Then, coupled
joint diagonalization establishes common eigenbases across all individ-
uals, and refines the functional correspondences. We evaluate our ap-
proach on fMRI data acquired during a language paradigm. Experiments
demonstrate the benefits in matching accuracy achieved by coupled joint
diagonalization compared to previously proposed functional alignment
approaches, or alignment based on structural correspondences.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a valuable neuroscientific tool
for deepening the understanding of the functional architecture of the brain, its
relationship to cognition, or effects of disease and treatment. fMRI introduces
numerous analytical challenges when seeking reliable answers to scientific or
clinical questions. A particularly difficult issue is the link between function and
anatomy. Relying on anatomical registration to establish correspondence before
comparing function across individuals can introduce noise or confounds, if the
location of functional regions varies or is correlated with disease. In this paper we
propose a functional registration approach based on joint diagonalization of the
functional connectivity relationship structure observed in multiple individuals.
A large body of research is focused on addressing fundamental challenges
in analysing fMRI data such as low temporal resolution, noise, or motion ar-
tifacts. However, the potential disconnect between structure and function is
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only addressed in a small number of studies. It is relevant, because the brains
anatomical structure can differ substantially across subjects , and the functional
structure can even vary within the same subject [22]. Typical fMRI group stud-
ies assume functional correspondence after normalization to a common tem-
plate space. However, since the localization and extent of functional areas varies
across subjects within a certain spatial region, standard group analysis, such as
the General Linear Model (GLM) [9] is degraded. Specifically, when studying
the impact of damage to the brains functional architecture, the decoupling of
changes in position and function is necessary. For instance, a brain tumor alters
the anatomical structure, and might lead to functional reorganization, where
other regions, possibly even on the opposite hemisphere, compensate for the
function of the affected region [7].

In this work we propose a functional registration approach which overcomes
the problem of structural and functional variability across individuals or patholo-
gies, by uncoupling function from structure and aligning datasets based on their
functional architecture. We propose to use coupled joint diagonalization [6] to
learn correspondences, and mutually regularize the embedding representation of
individual connectivity structures without using specific functional responses or
localizers.

1.1 Related work

Frist, we briefly review relevant related work on functional alignment, and pre-
vious work on manifold alignment related to the method proposed in this paper.

Incorporating functional information into anatomical registration has been
shown to account for functional variability between subjects, and improve the
inter-subject registration. For example, in [4] spatial patterns of functional re-
sponse are used to guide anatomical registration, [12] uses progressive matching
of multi-range functional connectivity patterns for spatial normalization, and
[21] performs fine-tuning of anatomical alignment via a nonrigid registration that
maximizes inter-subject correlation. Decoupling function from structure can be
achieved via manifold learning. It captures the underlying structure of the re-
lationships within a dataset (e.g. of functional signals) by embedding it into a
new space where the Euclidean distance represents these relationships. Manifold
alignment then allows to align the embeddings of multiple datasets based on sim-
ilar intrinsic characteristics. Two general approaches to manifold alignment have
been proposed in the literature: one-step and two-step approaches. In one-step
approaches, multiple datasets are aligned simultaneously, whereas in two-step
approaches, alignment is performed on individually created embeddings. Exten-
sions to the basic concept of one-step alignment [10, 25], have successfully been
applied to align image datasets of different objects [23], textual datasets [27],
or lung images of respiratory motion [1]. In [24], the authors proposed a ba-
sic two-step approach consisting of procrustes analysis of embedding maps with
application for transfer learning. Two-step manifold alignment approaches were
successfully used to map functionally coherent regions across a healthy popula-
tion [14], to brain tumor patients [15], and for shape matching [18,17, 16].



The benefit of two-step alignment is computational feasibility, whereas one-
step manifold alignment techniques can only be applied on a small number of
datasets with few sampling points, or with a sparsity constraint. Moreover, one-
step alignment is particularly sensitive to subtle differences in the intrinsic struc-
ture of each dataset, affecting their applicability on many real-world problems.
However, they have the favorable property to mutually regularize the individual
embedding representations. The drawbacks of one-step alignment can be over-
come with manifold alignment based on joint diagonalization of Laplacians [6,
13]. The joint diagonalization approach finds the eigenbases of multiple Laplacian
matrices of different datasets simultaneously. These eigenbases can be approx-
imated by a small number of eigenvectors of the dataset specific Laplacians,
reducing computational complexity of aligning multiple datasets with a large
number of sampling points.

Most recent manifold alignment techniques require at least a small subset
of correspondences between the datasets to be known. However, in the neu-
rological context at the center of this paper, this information is generally not
available, or not reliable. In this case, unsupervised manifold alignment, i.e.
alignment without known correspondences, establishes a similarity measure be-
tween the datasets. As proposed in [26], correspondence weights are established
based on a local pattern matching technique, and successfully applied to aligned
protein data. An unsupervised two-step alignment approach was introduced in
[20], where distances between sample points in the embedding space are used to
establish parameterized distances curves and subsequently similarities are cal-
culated between those. However, such correspondence estimation techniques are
only reliable when there are distinct comparable intrinsic structures present, e.g.
image datasets of different objects with comparable rotations.

1.2 Contribution

We propose a manifold alignment approach to build an atlas of functional net-
work characteristics establishing functional correspondences between individu-
als. Diffusion maps [3] encode the functional architecture of each individual and
initial correspondences are established via a two-step manifold alignment ap-
proach [15]. A subset of correspondence estimates between dense areas in this
intial alignment is used to initiate coupled joint diagonalization that simulta-
neously finds common eigenbases of the functional connectivity structures and
refined correspondences across all subjects [6].

2 Method

Diffusion maps [3] are used to encode the functional connectivity structure of
each individual. Based on these subject-specific embeddings initial correspon-
dences between fMRI datasets are established by a two-step manifold align-
ment approach [15]. It rearranges the spectral components based on spatial con-
straints, resulting in a population atlas of functional structure. Initial correspon-
dence estimate pairs between datasets are drawn randomly from dense areas in



this joint atlas. They initiate coupled joint diagonalization [6]. This results in
refined correspondences, and a common eigenbasis, which represent the aligned
underlying connectivity structure of a study group.

2.1 Spectral representation of functional connectivity

We embed the whole-brain functional connectivity structure of each individual
by diffusion maps [3], resulting in a functional geometry reflecting the func-
tional organization of the brain. The fMRI data I € RT*" consists of N voxels
v; observed at T time points. The functional architecture of a brain state can
be modeled as a connectivity graph G with vertices V representing the voxels,
and edges E between these vertices. Let W denote the affinity matrix assigning
weights to the egdes, where W;; is the Pearson correlation coefficient between
the time-series of vertex ¢ and j. The spectral representation of the functional
connectivity structure can be established via eigendecomposition of the nor-
malized Laplacian matrix L, defined as L = D~Y2WD~1/2 where D is the
diagonal matrix of node degrees, i.e. d; = > ; W (i, 7). The normalized Lapla-
cian is a symmetric version of the random walk matrix L = D~'W, which is
scaling invariant, and can be viewed as a diffusion process, where the transition
probabilities for a diffusion time ¢ between nodes can be expressed by Lt. Eigen-
decompostion of L results in eigenvalues A and corresponding eigenvectors &,
where \; =1 > Ay > --- > \,. The dataset can be represented by a diffusion
map with new embedding coordinates ¥, where each vertex ¢ in the original
graph is represented by

v = (A (@), \yta(2), - .., Agtba(@)), (1)

for every data point x in d dimensions of the embedding space. This translates
the functional organization of a brain to a functional geometry ¥, where the
functional relations of the fMRI signals are captured by the diffusion distance
D, [15]. The diffusion distance D, (i,7) is defined as the probability of traveling
from node 7 to node j in t steps, by considering all possible paths between these
two nodes. The Euclidean distance in this new embedding space approximates
the diffusion distance

Di(wi,x5) = ve(w:) — ve(;) |I° - ()

Thus, the functional relationship between voxels of a brain is translated to Eu-
clidean distances in a new embedding space, capturing the functional geometry
of the dataset. This uncouples function from anatomy, and is the basis for func-
tional registration of corresponding functional structures across individuals [15].

2.2 Initial correspondence estimates across individuals

We aim at aligning functionally equivalent areas across individuals. Assuming
that for a majority of functional areas the spatial difference is small we use



spatial correspondence for initialization. We perform an initial two-step manifold
alignment following the initialization procedure in [15]. First, we align brain
morphology to a common template [8]. Then, we orthonormally align individual
embedding maps representing each subject based on correspondence defined by
spatial position in the common template. For every subject specific embedding
¥, and template embedding ¥;, an orthonormal transformation matrix Qg is
calculated, accounting for rotations, sign flips and reordering of the spectral
dimensions. Qs is defined as

c

Qst = argénin(z we || QWse — e |I), (3)

c=1

where ¥ are the embeddings of s and ¢ and w is the Euclidean distance between
a pair ¢ of corresponding voxels. After this initial alignment of embeddings,
we perform nonrigid point cloud registration to refine the alignment and close
potential gaps between the embedded sampling point distributions by Coherent
Point Drift [19].

While preserving the functional relationship between brain regions, diffu-
sion maps typically encode a distinct functionally coherent cluster of brain re-
gions along a specific dimension, far from the origin in the leading dimensions
of the embedding space. We use this property to obtain initial pairwise point-
to-point correspondence estimates between two orthonormally aligned diffusion
maps ¥, and ¥, resulting in n correspondence pairs C' = {(7,j(?)) }i=1,...» With
j(i) = argmin; || ¥ (i) — W.(j) ||*. For each pair of embeddings, a subset of ¢
correspondence pairs C' is selected based on their distance from the origin and
used as initial coupling for joint diagonalization, described in the following sec-
tion. Note that the purpose of this initial alignment is only to determine a subset
of initial correspondence esimates. Sub-sequent joint diagonalization is based on
the individual Laplacians and the correspondence pairs.

2.3 Joint diagonalization

Joint diagonalization simultaneously finds the common eigenbases of the Lapla-
cians of multiple datasets [2,13,6]. In theory, if multiple datasets share similar
intrinsic structures, their Laplacians have similar eigenbases with variations in
rotations, coefficient sign or ordering of spectral components. Joint diagonaliza-
tion results in coupled eigenbases, which make the eigenbases of each individual
dataset consistent. The basic joint diagonalization problem with full coupling can
be formulated as an optimization problem of minimizing off-diagonal elements:

M
: Ty, . Ty _
mvln;off(v L;V) with VIV =1, (4)
where M is the number of different datasets, V' is their common eigenbases, L;

are the dataset specific Laplacians. The off-diagonal penalty off(X) is typically
defined as the sum of squared off diagonal elements off(X) =|| X — diag(X) ||%.



This problem can be solved with the generalized Jacobi method (JADE method)
[2]. Tt assumes full coupling with an equal amount of samples for every dataset,
i.e. every sampling point in a dataset has a corresponding point in all other
datasets. In our case we cannot assume identical numbers of sampling points or
complete given correspondences between datasets. Instead we only use a sub-set
of paired vertices to guide the joint diagonalization.

Coupled diagonalization allows to overcome these limitations [6, 13]. Only a sub-
set of sparse point-wise correspondences is used to establish a coupling relation
F. F; is a n; X q coupling matrix, where n; is the number of data points and ¢ is
the number of correspondences. Based on this sparse subset, eigenbases V; are
established, such that V;T' L;V; is approximately diagonal and the eigenbases cor-
respond for corresponding samples F;V; ~ F;V;. This results in multiple dataset
specific eigenbases, contrary to the original joint diagonalization approach [2].

To incorporate the coupling between datasets, the formulation in Equation
4 can be rewritten as

M M
rr%n;offm%v;) + uz | FIVi= BV, |F with VIVi= 1, (5)
where V; are the dataset specific eigenbases, L; the data specific Laplacians and
@ is a coupling weight [6]. The sparse coupling between two datasets i and j
is defined by corresponding points k; and k; and encoded as F;(k;,q) = 1 and
F;(kj,q) = 1, with zeros elsewhere in the ¢"" column. However, the coupling is
not restricted to such point-wise coupling, and can contain any correspondence
weighting. We use the leading k& dimensions of the embedding, since they hold
the majority of information. This reduces the computational complexity to an
optimization problem with k2M variables, instead of ZM n? variables for full
eigenbases. Then, the formulation in Equation 5 can be rewritten as

M M
mind | ATAA; (5 +p D | FLOA = FI U A; |5 with ATAi =1, (6)

i=1 i,j=1

where U; are the first k eigenvectors of L; and 4; is a k x k matrix with linear
combination coefficients to be estimated [6,13]. The specific eigenbases can be
reconstructed with V; = U; A;.

To solve Equation 6, we employ an optimization on a Stiefel manifold with
orthogonality constraints, introduced in [28]. Hereby, an unconstrained problem
is solved by building the orthogonality constraint into the optimization method
in the form of a projected descend. Following [6, 13], the cost function is rewritten
to

M
min | ATAA G +u ) | FTUA - FU; A5 |7, (7)
i =
and solved for all A; alternatingly, with the gradients for the off diagonal penalty

given by B B B ) B
Va, || AT A A; ||3= 4(A4AAT A A — AL, (8)
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Fig. 1: The encoded information is reflected by the eigenvalues of the Laplacians.
They indicate a dominance of the task structure, and the relation between task-
negative (blue) and task-positive (red) networks can be observed as a smooth
transition in the diffusion maps.

and the gradient for the coupling term given by

Va, | FTUA; — FJU;A; |3=20] F(FT U A; — F U Ay). (9)

Coupled joint diagonalization can be viewed as a mixture between a one-step
and a two-step manifold alignment approach. First, like in two-step alignment
techniques, Laplacians are computed for each dataset. The eigenvectors and
eigenvalues of each individual Laplacian are then used to find common eigen-
bases, following the principle of one-step manifold alignment approaches.

After coupled joint alignment every voxel in every individual is represented by
a point in the joint embedding space. The final correspondences are determined
by nearest neighbor search. For every voxel ¢ in a dataset X, a corresponding
voxel j in a dataset Y can be found by the minimal Euclidean distance between
the aligned embedding maps Wy and Wy: j = argmin; || ¥x (i) — ¥y (5) ||*.

3 Evaluation

3.1 Data

We evaluate the alignment algorithm on fMRI data collected in study with a lan-
guage related block design paradigm, comprising 12 healthy individuals. During
the activation blocks, subjects are instructed to read nouns and mentally gen-
erate associated verbs. During the baseline block hash signs are presented. The
fMRI was acquired on a 3T unit (Philips Medical Systems, Best, The Nether-
lands) equipped with a 12 channel head coil, using a single shot echo planar
imaging (EPI) sequence with TR/TE 3000/35 ms, 128 x 128 x 32mm Matrix,
voxel size 1.8 x 1.8 x 4mm?, 100 volumes and a duration of 5 minutes comprising
5 task - rest alterations. Standard fMRI preprocessing is performed with FSL
[11] and Freesurfer [8], including co-registration, motion-correction and removal
of time-points with extensive motion. The fMRI data is normalized to a com-
mon space via registration to the Freesurfer average cortical surface template in
MNTI space [5]. The time-series are projected onto this cortical surface and are
normalized to have zero mean and unit variance. The preprocessing results in a
total of 4718 cortical brain regions used for further analysis.



3.2 Evaluation

We evaluate if the alignment accurately matches areas that exhibit the same
language task response activation. A standard GLM [9] activation analysis is
performed on the fMRI data of each individual, and the obtained /3 parameters
are transformed to z-scores. Since manifold alignment is performed without any
direct activation information, we use the activation analysis as reference for val-
idation of matching accuracy. In a leave-one-out cross validation, we label the
brain regions of a target subject with the z-scores of the closest region in the
manifold atlas of the remaining subjects after alignment (’prediction’). We com-
pare the z-scores of the subject specific GLM analysis on the target subject with
the predicted z-scores by applying a cut-off and calculating the Dice-coefficient
between predicted and measured z-scores. To illustrate the relationship between
accuracy and z-score, we report results over a range of z-score values. We compare
the alignment of two variants of the proposed approach and 2 alternative ap-
proaches. (1) Coupled joint diagonalization using initial correspondences in high
density regions of the embedding space (DG), (2) coupled joint diagonalization
using initial correspondences randomly distributed across the space (DGrand),
(3) the orthonormal Procrustes alignment of functional connectivity manifolds
based on spatial correspondences as used for initialization in [15] (MA ortho),
and we establish correspondence based on the MNI coordinates of cortical ver-
tices, i.e, relying entirely on the anatomical registration (MNI). We perform
embedding of the fMRI data of each individual with a correlation threshold of
zero, retaining only positive correlation values between brain regions.

3.3 Results: alignment of language networks

Examples of embedded functional network structures are shown in Figure 1 with
the first two dimensions of the diffusion maps. The activation z-score is visual-
ized by the color. Note that z-score information does not enter embedding or
alignment. While the overall structure varies, the functional architecture is com-
parable: a common smooth transition between task-positive regions (red) and
task-negative regions (blue). This can be explained by the fact that the intrinsic
functional structure of each individual, modeled via correlation between time-
series, is dominated by the task paradigm. This is supported by the eigenvalues
of the Laplacians (Figure 1 left), which reveal a rapid decrease in information
encoded along each additional dimension, consistent across the study group.
Therefore, we limit our further analysis only to the first 5 dimensions of the
diffusion map embeddings.

Figure 2a shows the alignment accuracy of MA ortho using 1, 3 and 5 eigen-
vectors, analogously Figure 2b shows the results for DG. A more liberal threshold
results in more voxels labeled as activated, which implicates a trend towards a
higher dice score. A strict univariate GLM analysis might miss some voxels in-
volved in a task, which can be found via network matching. Overall, diffusion
maps with 3 dimensions achieve the best alignment results, which can be ex-
plained by the basic task-driven intrinsic functional connectivity structure of
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Fig.2: Alignment accuracy: (a) Two step orthonormal manifold alignment for
different z-score cut-offs and numbers of eigenvectors. (b) Alignment results for
DG and 500 correspondences, shows highest alignment accuracy with the first
3 eigenvectors, although the first 5 eigenvectors are more sensitive at higher z-
score thresholds. (c) As expected, DG with 500 correspondences (10.5%) yields
overall best results, however comparable performance can be achieved with only
100 couplings (2.1%). (d) The overall comparison shows that our application
of joint diagonalization yields better results compared to the two-step mani-
fold alignment (MA ortho). The utilization of weighted correspondences (DG),
yields better results compared to joint diagonalization with random pairs of
correspondences (DGrand). As expected, performing transfer learning with the
closest region on the cortex (MNI) performs underwhelming.

the language dataset. This is especially noticeable for DG, indicating that 3
common eigenbases are shared across the dataset. The impact on the number
of initial correspondences during coupled joint diagonalization is shown in Fig-
ure 2c. While 500 correspondences, 10.6% of points in the datasets, yield better
results, even with 100 correspondences, which correspond to only 2.1% of sam-
pling points, matching accuracy is comparable. Finally Figure 2d compares all 4
alignment approaches. The coupled diagonalization approach (DG) is more accu-
rate than the orthonormal two-step manifold alignment (MA ortho). Moreover,
we observe the benefit of drawing initial correspondences during coupled joint
diagonalization from dense regions in the atlas. When drawing random corre-
spondences between closest points (DGrand), the joint diagonalization approach
performs similar to the two-step manifold alignment method with spatial con-
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Fig.3: A single subject example of mapped activation with a z-score threshold
of 2.5 on the left hemisphere. Our application of coupled diagonalization (DG)
maps core regions related to language function successfully, with false positive
and false negative mappings on the border areas.

straints. An example of matched activation maps is illustrated in Figure 3. For
one subject and a z-score threshold of 2.5 we compare the actual activation with
the predicted activation. The core regions of the language related networks are
mapped successfully, with false positive and false negative mappings located on
the edges of these regions, which is analogous to the typical gaussian structure of
GLM activation analysis in fMRI studies. Analogous to the quantitative results
the coupled joint diagonalization (DG) most accurately predicts the language
regions.

4 Conclusion

We propose coupled joint diagonalization to perform alignment of embedding
representations of functional network structures. Sparse coupling reduces the
computational complexity of the problem and facilitates manifold alignment for
multiple datasets with a large amount of sampling points. In contrast to two-
step approaches, joint alignment allows to draw upon multiple subject data
simultaneously to learn a robust joint embedding. Estimating a subset of initial
correspondences between functional datasets is challenging, and sub-sequent re-
finement and reestimation of correspondences after joint diagonalization exploits
shared functional connectivity architecture, in order to establish correspondence
despite spatial variability of functionally active regions. Manifold alignment al-
lows for spectral embedding and clustering, or corresponding transfer learning
on a group level, by taking advantage of common intrinsic structure present in
multiple datasets. The proposed manifold alignment is suited to support the
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analysis of functional characteristics of the brain by accounting for functional
variability, and has the potential to quantify the spatial properties of functional
reorganization.
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