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Abstract— Acute Myeloid Leukaemia (AML) is a rare type of
childhood acute leukaemia. During treatment, the assessment of
the number of cancer cells is particularly important to determine
treatment response and consequently adapt the treatment scheme
if necessary. Minimal Residual Disease (MRD) is a diagnostic
measure based on Flow CytoMetry (FCM) data that captures the
amount of blasts in a blood sample and is a clinical tool for plan-
ning patients’ individual therapy, which requires reliable blast
identification. In this work we propose a novel semi-supervised
learning approach, which is acquired whenever large amounts
of unlabeled data and only a small amount of annotated data
is available. The proposed semi-supervised learning approach is
based on Wasserstein Generative Adversarial Network (WGAN)
latent space embeddings learned in an unsupervised fashion and
a simple Fully connected Neural Network (FNN) trained on
labeled data leveraging the learned embedding. We apply our
proposed learning approach for semi-supervised classification of
blasts vs. non-blasts. We compare our approach with two baseline
approaches, 1) semi-supervised learning based on Principal
Component Analysis (PCA) embedding, and 2) a deep FNN that
is trained only on the annotated data without leveraging an
embedding. Results suggest that our proposed semi-supervised
WGAN embedding outperforms semi-supervised learning based
on PCA embeddings and if only small amounts of annotated data
is available it even outperforms an FNN classifier.

I. INTRODUCTION

Minimal Residual Disease (MRD) is a prognostic value used
for assessing therapy response in leukaemia (blood cancer)
and is defined as the proportion between cancer cells (blasts)
among the amount of all cells observed. Thus, for its compu-
tation the identification of blast cells among non blast cells is
essential. In recent years the MRD value has been identified as
powerful and guiding diagnostic tool for planning therapeutic
intensity of an individual patient [1]-[4].

A. Childhood Acute Leukaemia

Acute Leukaemia is a blood cancer, which is caused by
genetic alterations of hematopoetic progenitor cells, which
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Fig. 1. Affected Blood Generation Pathways in Acute Leukaemia

are involved in the blood generation process (hematopoiesis).
Consequently, this leads to the proliferation of leukaemic
(undifferentiated) cells. Dependent on the affected progenitor
cell type, we can differentiate between Acute Lymphoblastic
Leukaemia (ALL) and Acute Myeloid Leukaemia (AML).

1) Acute Lymphoblastic Leukaemia (ALL): Acute Lym-
phoblastic Leukemia is the most common leukaemia type in
children and has a 25% fraction of cancer diseases in the
pediatric population [5]. The involved progenitor cells can
influence the differentiation process of T-cells or B-cells, why
ALL is divided into two main sub categories namely T-ALL
and B-ALL. The T-ALL’s prevalance has its peak during
childhood at age of 10 years and the prevalence’s peak of B-
ALL occurs in the age range between 2 to 5 years [6] [7]. Fig.1
illustrates the general blood cells generation pathway. Cell
groups affected in ALL lie within the blue dotted rectangle
on the right side. Since the 1970s the cure rates improved to a
85% survival rate for childhood ALL in developing countries
[6].

2) Acute Myeloid Leukaemia (AML): Acute Myeloid
Leukaemia is a rare leukaemia type in children and accounts
for 20 percent of leukaemias in this population [8]. Its inci-
dence increases with age [9] and the peaks of its prevalence



lie between 18.4 at age range 0 to 1 and 4.3 million at the age
range 10 to 14 years in the United States [10]. Dependent on
the AML subtype children have approximately a 70 percent
five year survival rate, if they are younger than 15 years [8].
This blood cancer type affects the myeloid progenitor cells,
which consequently leads to a reduction of mature blood cells
and an increase of the number of malignant cells [10]. Cell
groups affected in AML lie within the pink dotted rectangle
in Fig. 1.

B. MRD Assessment over Leukaemia Therapy

The therapy for acute leukaemia is guided by treatment
protocols, and evaluated by performing international clinical
trials over several years, to ensure quality and safety [11].
In the case of ALL data used in this work the AIEOP-
BFM 2009 protocol! is followed and for AML the AML
BFM 2004 treatment protocol [8]% is used. For the reliable
assessment of MRD over leukaemia therapy, FlowCytometry
(FCM) acquisitions of a patient’s blood sample are obtained.
This technique is more cost- and time effective compared
to polymerase chain reaction [13]. FCM uses a laser-based
technology to observe blood cell specific antigen patterns
on a blood cell’s surface (immunophenotypes) [14], [15].
Therefore, in a staining procedure specific antibodies with
an attached fluorochrom are used to mark these antigens in
a first step and subsequently, FCM is used to capture the
emission spectra of fluorochroms triggered by the lasers’ hit
on the stained cells’ surface. In Fig. 2 an example of a FCM
image is visualised. Every dot represents a cell and its position
is determined by the expression level of two antibodies, in
this case CD 317 (y-axis) and CD 33 (x-axis). The scale of
each axis is of logarithmic scale. Since FCM data is multi-
dimensional (number of dimensions = number of antibodies
in the panel) clinicians draw polygons (gates) around cell
clusters of interest by observing different combinations of
antibodies in two dimensional graphical representations (dot
plots) and follow a specific gating hierarchy. The manual
gating procedure strongly relies on the operator’s skills and
expertise, is highly subjective and time-consuming. The MRD
assessment is especially challenging and important in the late
therapy phases, where small populations of leukaemic cells
(0.1% of all observed cells) have to be accurately detected, to
estimate the risk of relapse and if necessary adapt the therapy.
Additional challenges arise by the limited number of cells in
a test tube available for FCM measurements and treatment,
age or phenotypic variances, which influence the regeneration
status of bone marrow precursors and the MRD value [13].

TAIEOP-BFM 2009 is a conducted randomized clinical trial for ALL
between age 1-18 years in 10 countries in- and outside Europe, with approxi-
mately 1000 patients observed per year [12]) http:/www.bfm-international.org/
[accessed 2018-01-05]

2AML BFM 2004 is a conducted randomized clinical trial for chil-
dren and adolescents with AML between age 0-18 years with 722
patients https://www.kinderkrebsinfo.de/ health_professionals/clinical_trials/
closed_trials/aml_bfm_2004/index_eng.html [accessed 2018-01-05]
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Fig. 2. Illustration of a sample obtained by a flow cytometer and the manual
drawn blast gate (polygon) composed by the features CD 371 and CD 33.
Leukaemic cells are illustrated in red, normal cells in green.

C. Related Work

Recent automated gating approaches proposed focus on
modelling leukaemic and non-leukaemic cells for ALL [16],
[17], [18], [19], [20], [21] since it is the more common
leukaemia in children. The main goal lies in the observation of
the multidimensional space at once to replace the multiple ob-
servation of 2D feature representations. However, visualisation
and interpreting multi-dimensional data remains challenging.
Recent approaches [22] use embedding techniques to represent
multidimensional FCM data in reduced dimensionality. They
use subsampled data of 10 control subjects to create t-SNE
maps (cf. [23] for more details) for the subsequent visual
MRD assessment in ALL by projecting a patient’s data into
the embedding space using the transformation learned. The
limit lies in the restricted amount of cells that are observable
per subject (2 * 10* out of 10°) according to increasing com-
putational burden with increasing cell counts. Van Unen et al.
[24] address this issue by providing a hierarchical stochastic
neighbourhood embedding of gastrointestinal disorders mass
cytometry data. In [25] machine learning approaches were
evaluated regarding their ability to automatically assign a
biologically meaningful population label to every observed cell
in childhood AML. Because of the rarity of the disease and
consequently of available data containing cancer cell popula-
tions, they consider to focus on modelling the distribution of
background cell populations (non cancer cells) using Gaussian
Mixture Models. Cancer cells are detected subsequently, by
estimating the anomaly of cells of a new sample estimated
on bases of the learned control distribution. They showed that
non-cancer populations of non AML cases and AML cases are
combinable and can be used to increase the dataset in case of
lack of available data to predict MRD in AML.

D. Contribution

The contribution of this work is three fold. First,
we propose to utilize Wasserstein GAN (WGAN) for
unsupervised learning and a simple Fully connected Neural
Network (FNN) classifier trained on labeled data leveraging
the learned embedding. Based on large amounts of unlabeled
data (comprising both blood samples of control subjects and
AML patients), we train a WGAN and leverage the learned
latent space, semantically meaningful low-dimensional



embedding space, on which we base subsequent classifier
training for classification of blasts vs. non-blasts. Second, we
provide extensive evaluations to assess the performance of our
proposed semi-supervised learning approach in comparison to
two baseline approaches, 1) semi-supervised learning based
on Principal Component Analysis (PCA) embedding, and 2) a
deep FNN that is trained only on the annotated data without
leveraging an embedding. The new formulation provides a
dimensionality reduction scheme to compute z-embeddings
of FCM data, considering the whole amount of cells in a
patient’s sample without applying subsampling techniques
compared to recent proposed embedding approaches [22]
[23]. Third, we apply these methods on FCM data that
have not been used yet for blast identification and in further
consequence to assess MRD in AML patients.

In Section II a brief overview of the methodology proposed
is given and the embedding techniques as well as the used
neural network classifiers are introduced. In Section III the
datasets are presented and the evaluation setup is summarized.
This work concludes in Section IV with a discussion of
directions for future work.

II. METHODOLOGY

In this section a brief summary of the approaches designed
for the automatic MRD assessment of AML are introduced.
For this task the solving of a binary classification problem
(blast, non-blast) for every measured blood cell is necessary.
According to the definition of MRD (cf. Equation 1) the counts
of blast and non-blast cells have to be estimated, to be able
to compute this therapeutic value. In Equation 1 MRD is
represented by the ratio between the number of blast cells
nglxa)sts and number of all cells in a sample N, éfz)ccus’ where
z refers to the x-th sample.

(x)
]\]]-\i Zl)asts (1)
allCells

The proposed automatic gating strategies observe the multi-
dimensional feature space in contrast to manual gating pro-
cedures. Nine features are measured per cell which consist of
two physical FCM measures and seven distinct antibody types
(cf. Section III-B). The data are annotated per medical experts
and dependent on the condition of the patient, approximately
3%105 - 10° cells are extracted per subject. In the following, we
describe two approaches for leaning low-dimensional feature
embeddings.

MRD®) =

A. Generative Adversarial Networks (GAN)

We propose to utilize WGANSs for unsupervised learning
of a low-dimensional embedding. This unsupervised-training
approach is inspired by the work of [26], where a deep convo-
lutional generative adversarial network (DCGAN) [27] is uti-
lized for unsupervised learning to perform anomaly detection.
We first train a WGAN [28], following the improved WGAN
training procedure [29]. In the original GAN training proce-
dure [30], the Jensen-Shannon divergence is minimized. In

contrast, during WGAN training, the Wasserstein distance — a
smoother metric — is intended to stabilize (and thus to improve)
the training procedure. A fully connected network architecture
is used for both components of the WGAN, the generator and
the discriminator. The generator is implemented as fully con-
nected decoder network, which maps from low-dimensional
space (3 dimensions) to original higher-dimensional data space
(9 dimensions). The discriminator maps from original data
space (9 dimensions) to low-dimensional space (3 dimen-
sions). Both networks comprise 4 hidden layers with 128 neu-
rons and an output layer. The generator utilizes rectified linear
unit (ReLU) activation functions [31] and a tanh-function
on top of the linear output layer, whereas the discriminator
utilizes leaky ReLU activation functions and a linear output
layer. During WGAN training, the generator is trained to
generate realistic “looking” data samples from random inputs
z € Z that are sampled from the normal distribution. WGAN
training yields a parametrized generator and discriminator and
a semantically meaningful (low-dimensional) latent space Z,
from which realistic data samples can be generated. For further
processing steps, we only utilize the generator and freeze the
learned parameterization, i.e. the parameters are not updated in
the subsequent steps. Following the mapping procedure from
data space to the latent space, introduced in [26], for a given
data sample x, we find the optimal z € Z in an iterative
process via n backpropagation steps, where only z coordinates
are adapted. We consider that z optimizes that maps to the
generated sample & with minimum residual |z — Z|. All data
samples © € X are mapped via this procedure to latent space
Z, which represents our low dimensional embedding space.

B. Principal Component Analysis (PCA)

As baseline approach we utilize Principal Component Anal-
ysis to compute low-dimensional FCM data representations
in a feature space of reduced dimensionality (3 dimensions).
This technique is used in an unsupervised way to learn
a new representation of decorrelated components (principal
components) in terms of a linear combination of the orginal
variables. It has been used for the analysis for FCM data since
1984 [32], but for MRD assessment of AML in developing
cohorts, to our knowledge, no application has been reported
yet. PCA is used as a baseline for an embedding technique in
the evaluation scheme proposed.

C. Neural Network Classifier (NN)

For the final discrimination between blast and non-blast,
we train a neural network classifier on top of the embeddings
computed with WGAN or with the PCA embedding method
described above. The WGAN or the PCA embeddings are
fed into a classifier, which is a simple fully connected neural
network (NN) comprising two hidden layers with 128 neurons
each and a classification layer. We use rectified linear units as
activation function. The NN classifier is trained using cross
entropy loss.



TABLE I
BLAST IDENTIFICATION PERFORMANCE OF OUR PROPOSED WGAN-NN CLASSIFIER AND TWO ALTERNATIVE APPROACHES, PCA-NN AND FNN,
TRAINED ON SMALL OR LARGE ANNOTATED DATASETS.

Scenario small dataset Scenario large dataset
Methodology | Precision | Recall | fscore | Specificity AUC Precision | Recall | fscore | Specificity AUC
PCA-NN 0.5471 0.7690 | 0.5829 0.8151 0.7952 0.5986 0.9213 | 0.6893 0.7916 0.9008
FNN 0.6037 0.7543 | 0.6164 0.8594 0.8336 0.6526 0.9250 | 0.7305 0.7933 0.8892
WGAN-NN 0.5502 0.9049 | 0.6483 0.7452 0.8592 0.6320 0.8942 | 0.7147 0.8364 0.9139

D. Fully Connected Network Classifier (FNN)

In contrast to the simple neural network classifier that is
trained on top of the low-dimensional embeddings, we im-
plement a deep fully connected feed forward neural network,
which is used as reference approach. Based on this model,
we study the achievable performance of a state-of-the-art
classifier trained on a large annotated dataset. This networks
comprise 4 hidden layers with 128 neurons followed by 2
hidden layers with 32 neurons and a classification layer. The
activations of the hidden units are computed applying ReLU
activation functions. This network is soley trained on original
data without any prior embedding or preprocessing, and thus
the optimal discriminative feature representation has to be
learned during classifier training.

III. RESULTS

In this section first the dataset and the preprocessing steps
are introduced and second a description of the evaluation setup
and results are presented.

A. Preprocessing

Every subject’s sample is preprocessed and annotated at
the national diagnostic reference center for paediatric AML,
following the international standard operating procedure for
MRD detection using FCM. According to the partial overlap
of different fluorochrom spectra, spillover compensation is
used to obtain statistical independence of the data, by using
a correction matrix. The preprocessing concludes with a nor-
malization step of the measured parameters to obtain a value
range between 0 and 1.

B. Datasets

As introduced in Section I-B specific antibodypanels are
used to stain the cell specific antigen patterns on the cells’
surfaces. In this study nine different features are measured
for every cell: two optical parameters (FSINT, SSINT) and
seven fluorescence based parameters (CD38, CD34, CD117,
CD33, CD123, CD45RA, CD45). One feature represents a
dimension in the multidimensional data space. All participants’
guardians (parents) and patients were informed about the aim
of the study and gave their written, informed consent prior
to inclusion. According to Licandro et al. [25] healthy cell
populations of ALL and AML cases are combinable and can
be used to increase the dataset in case of lack of available
data to learn a good data representation of AML data during
unsupervised learning. For training of the simple NN classifier
and for training of the deep FNN classifier only annotated

AML data is used. Thus, we considered to follow this strategy
to achieve a higher number of samples and use a combination
of AML and ALL dataset as well.

The AML dataset is acquired using FCM measurements of
in total 15 AML diagnosed subjects containing blast and
non-blasts. The ALL dataset consists of measurements of 24
patients that have been diagnosed with ALL in the remission
phase, i.e. where no blasts are present and thus no annotations
on cell-level are available.

C. Evaluation Strategies

To keep comparability of the embedding approaches evalu-
ated the same training set consisting of ALL and AML samples
are used to learn an embedding without subsampling of the
data in an unsupervised way. As PCA implementation we
used the Incremental Principal Component Analysis (IPCA)
toolbox integrated in scikit learn Python framework® with the
number of components set to 3. The WGAN is trained in an
unsupervised way with an latent space of three dimensions.
We evaluated the blast identification performance using two
different scenarios of annotated training data sizes: In Scenario
small dataset 32 cells per case (i.e. patient) were used and
in Scenario large dataset 50000 cells per case, which reflect
scenarios of low and high annotation burden, respectively. For
both strategies, 3-fold cross-validation was performed with 5
cases per split and every patient occurs only in one split. In
every iteration, 2 splits were used for training and 1 split was
used for validation. In the testing phase no subsampling was
performed.

D. Blast Identification

We use the following measures for blast identification
performance evaluation: precision, recall, f-score, specificity
and AUC [34]. In Table I the evaluation parameters for both
scenarios and every approach are illustrated and computed via
averaging the values of the patient specific clinical perfor-
mance measures. In scenario large dataset, WGAN-NN and
FNN outperform the PCA-NN approach. This suggests, when-
ever large amounts of annotated data for supervised classifier
training is available, there is no additional performance gain,
when classification training is performed on an embedding
learned in an preceding unsupervised training step, since the
FNN is already capable to learn the data representation. In
contrast to this, in scenario small dataset (i.e., a case of a small
number of available annotated data) WGAN outperforms the

3http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
IncrementalPCA.html [33]
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Fig. 3. Qualitative results for scenario small (first row) and scenario large second row) of identified blasts by PCA-NN, GAN-NN and FNN of a subject’s
testsample compared to manual blast annotations in AML data for the features SS INT and CD117.

FNN classifier. In Fig. 3 an example for qualitative results
for a test sample of a subject on scenario small (top) and
scenario large (bottom) are visualised with corresponding
MRD values. Blasts are shown in red and non-blasts in black.
The manual annotations are presented in the first column,
while the identified labels are shown in the second column
for PCA-NN, third column for GAN-NN and for FNN in
the fourth column. In Fig. 5 the predicted MRD values are
plotted versus the true MRD values. Every point represents a
subject and should lie on the diagonal in the optimal case. It
is observable that the samples of PCA-NN and FNN deviate
more from the optimal line compared to the WGAN-NN
approach, especially in the small scenario. Fig. 4 illustrates
the Receiver Operating Characteristic (ROC) curve for the
blast identification performance for all patients’ cells observed
of a simple neural network classifier that has been trained
on WGAN embedding (red), on a PCA embedding (blue)
and a fully connected network classifier (green), that has
been trained on original input data. The results of the small
annotated dataset scenario are visualised left and on the right
the large annotated dataset scenario is shown.
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Fig. 4. Receiver Operating Characteristic (ROC) curves. Binary classification
performances of a simple neural network classifier trained on a WGAN
embedding (WGAN-NN) or trained on a PCA embedding (PCA-NN), and a
deep fully connected neural network classifier (FNN) soley trained on original
input data. (a) Scenario small annotated dataset. (b) Scenario /arge annotated
dataset.

IV. CONCLUSION

We propose a novel semi-supervised learning approach
based on a combination of WGAN latent space embedding
and a simple fully connected neural network. We provided
two evaluation schemes: In the first scenario large annotated
datasets are used and results show, that WGAN-NN and FNN
outperform the PCA-NN approach. According to the rareness
of the disease, only a limited number of annotated data is
available. We created a second evaluation scenario comprising
a small dataset simulating this fact, where the results show that
WGAN outperforms both, the PCA-NN and FNN approach.
For future work we aim to use data from different countries,
machines and background samples and focus on obtaining
machine and country independent data representations.
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