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Abstract. Multiple Myeloma (MM) is a bone marrow malignancy af-
fecting the generation pathway of plasma cells and B-lymphocytes. It
results in their uncontrolled proliferation and malignant transformation
and ultimately can lead to osteolytic lesions first visible in MRI. The ear-
liest possible reliable detection of these lesions is critical, since they are
a prime marker of disease advance and a trigger for treatment. However,
their detection is difficult. Here, we present and evaluate a methodology
to predict future lesion emergence based on T1 weighted Magnetic Res-
onance Imaging (MRI) patch data. We train a predictor to identify early
signatures of emerging lesions before they reach thresholds for reporting.
The algorithm proposed uses longitudinal training data, and visualises
high- risk locations in the bone structure.

1 Introduction

Multiple Myeloma (MM) accounts for 10% of all bone marrow malignancies with
an incidence rate of 6/100000 per year in western countries [5]. It is the second
most common blood affecting malignancy, which disturbes the generation path-
way of plasma cells and B-lymphocytes. Consequently, these cells proliferate
uncontrolled and are transformed in a malignant way [10]. In addition, the pro-
duction of large amounts of non-functional monoclonal antibodies is enforced,
which affects the function of kidneys, increases the deficiency in immune re-
sponse and in an advanced stage, influences the generation of bone forming and
resorbing cells. MM starts at a precursor state of Monoclonal Gammopathy of
Undertmined Significance (MGUS) and further envolves to an asymptomatic
form of the disease smoldering Multiple Myeloma (sMM) with a predictable pro-
gression to the symptomatic form of MM [4].

Longitudinal bone infiltration patterns of MM progression The increased amount
of plasma cells in MM leads to the alteration of bone remodelling mechanisms,
by promoting bone resorption and inhibiting bone formation [10]. This results
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Fig. 1. Visualisation of an infiltration pattern of a focal lesion (yellow) using T1
weighted MRI scans over multiple examination time points of one patient.

first in the formation of focal or diffuse bone marrow infiltration. The gold stan-
dard for observing these initial infiltration patterns is MRI (T1, T2) [1][8][4].
Subsequently, the progression of the disease leads to the building of osseous de-
structions, which are observable using low-dose Computer Tomography (CT) [6].
Figure 1 illustrates the infiltration pattern of a focal lesion evolving at the distal
part of the femur over three examination time points of a single patient.

Challenges Challenges of tracking lesions over time are, identifying early sig-
natures of their emergence, accurate alignment of subject whole body images,
imaging artefacts, and subtle non rigid deformations, as well as capturing the
heterogeneity of diffuse infiltration patterns and their imaging signatures. Differ-
ent treatment strategies and patient specific treatment response, and progression
speed cause further variability. According to the results reported in the recent
study of Mateos et al. [7], it is particularly important to assess high-risk sMM pa-
tients for developing MM and corresponding infiltration patterns, since a benefit
for the patient from early therapy is observable.

Contribution Here, we propose and evaluate a predictor for future bone infil-
tration patterns. The algorithm uses longitudinal data to learn a local predictor
of lesion emergence and change. We assess longitudinal relationships between
subsequent stages of bone lesions and corresponding infiltration patterns of MM
patients to provide a predictive signature for bone lesions. The contribution of
the paper is three fold: (1) the longitudinal alignment of multiple bodyparts
in whole body MRIs, (2) a classifier incorporating data from different disease
stages in MM and (3) a local lesion risk score (LRS) to identify bone regions
with a higher probability to evolve to diffuse or osteolytic lesions. We first give
an overview of methodology and the data in Section 2. The evaluation results
are presented in Section 3 and the conclusion of this work and possibilities for
future work are summarized in Section 4.

2 Methodology

We first describe longitudinal alignment, and then introduce the methodology
to estimate a local Lesion Risk Score (LRS) for future lesion emergence. Figure



2 illustrates the computation pipeline of the lesion risk score. It consists of four
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Fig. 2. Lesion Risk Score computation pipeline

components: data acquisition, data preprocessing, train and test data design
and LRS computation. Details regarding the train and test data design are
summarized in Section 3.

Longitudinal Alignment To perform subject specific longitudinal analysis of
subsequent lesion states, we first register a patient’s data Iti = {It1 , ...ItM }. A
patient’s image at a timepoint ti is aligned to all subsequent timepoints x =
ti+1, ..., tM , depending on the number of available data. Bias field correction is
used to process imaging data before alignment using FAST1 [3] integrated in the
FMRIB Software Library (FSL)2. The aligned image Iti(x) is obtained following
a two step registration procedure (cf. Equation 1).

Iti(x) = Iti ◦ φNR((A ∗ Iti), Ix) (1)

Although longitudinal data is registered, patients’ shape vary over time, since
the median inverval between MRIs is 13 months. Also the acquired images do
not visualise exactly the same body part snippets. Thus, we decided (based on
experimental results), to use an affine approach first. This affine alignment A is
performed using a block matching method for global registration. The resulting
transformed image (A ∗ It1) is used as moving image in the second alignment
step. Subsequently, a non-rigid deformation φNR to the target at time point x
is estimated. For affine registration the function reg aladin and for non rigid
alignment the function reg f3d are used, which are integrated in the NiftyReg
toolbox3 [9]. For assessing the quality of registration, moving and target image
were inspected manually using overlay visualisations and evaluated regarding
correspondence of lesions’ position between the different time points.

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST [accessed 11th of June 2018]
2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed 11th of June 2018]
3 http://cmictig.cs.ucl.ac.uk/research/software/software-nifty/niftyreg [accessed 11th

of June 2018]



Patch Creation and Data Augmentation After alignment, MR images
It1(x) of a patient correspond to timepoints x and corresponding annotations
Sx of the lesion in a future image of the patient. After the longitudinal align-
ment of acquisitions of one patient, datasets are created by using the intensity
image of a subject at time point t and to this time point aligned annotations
of lesions of subsequent time points t + i, where i is 1, ..., n (n... number of
available subsequent time points). Given those data pairs, patches are created in
the lesion regions, by first computing the barycentre of the lesion’s annotation
in the subsequent state and randomly moving a clipping window around it to
avoid the predictor to learn uniform lesion positions. Additionally, we repeated
this procedure for rotated intensity images and corresponding annotations. The
rotations were performed in 20 degree steps.

Local Lesion Risk Score The proposed local Lesion Risk Score (LRS) uses
early signatures of emerging bone lesions to predict future lesions and mark
corresponding high risk locations. We use the computed pairs of image patches
and corresponding lesion annotations of a subsequent state to train a random
forest classifier that predicts future lesion labels from the present image patch
data. During application, a score is obtained for each voxel position V by the
probability predicted by the trained random forest for a new input patch.

LRSV = PRF (Iti(x)) (2)

We used the Python framework sklearn with an integrated Random Forest pre-
dictor4 with 10 decision trees and the following parametrisation: n estimators=10,
criterion=gini, max depth=2, min samples split=2, min samples leaf=1,
min weight fraction leaf=0.0, max features=auto, max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None, bootstrap=True,
oob score=False, n jobs=1, random state=None, verbose=0, warm start=False,
class weight=None .

3 Results

In this section an overview of the evaluation dataset is given and the quantitative
as well qualitative LRS evaluation results are presented and discussed.

Dataset In this study 220 longitudinal whole body (wb) MRIs from 63 pa-
tients with smoldering multiple myeloma (following the 2003 guidelines [2]) were
acquired between 2004 and 2011. At least one wbMRI was performed per pa-
tient. The annotation of focal lesions is performed manually by medical experts
starting at a lesion size bigger than 5 mm [1], since according to the IMWG con-
sensus statement, from this size on, patients are considered to have symptomatic
myeloma with therapy requirement. Table 1 summarizes the study participant’s



Table 1. Participants’ demographics

Patients 63 (24 female)

Therapy Radiation or resection

Median age at initial MRI (yrs) 55

Age range (yrs) 29 -76

Median interval between MRIs 13 months

Median observation time 46 months

demographics. The protocol of this study was approved by the institutional ethics
committee and all subjects gave their informed consent prior to inclusion. The
scanning was performed on a 1.5 Tesla Magnetom Avanto (Siemens Healthineers,
Erlangen, Germany) scanner. For the T1 weighted acquisition a turbo spine echo
sequence (repetition time (TR): 627 milliseconds (ms), echo time (TE): 11 ms,
section thickness (ST): 5mm, acquisition time (TA): 2:45 min) was performed of
the head, thorax, abdomen, pelvis and legs using a coronal orientation and for
the spine in sagital orientation. No contrast medium was given. The duration of
a scan was approximately 40 minutes long.

Train and Test Data Design In this study we used acquisitions from two
body regions: In region 1 thorax, abdomen and pelvis are visualised and in re-
gion 2 the lower part of the pelvis, femurs and knees. These areas are considered
since most lesions occur in those. In this work we observe two types of lesions
and evaluate the performance of the methodology proposed separately for ev-
ery type, with corresponding train and test sets: lesions which are emerging, i.e.
which are not reported in the first scan, but in the subsequent scan, and chang-
ing lesions, which are annotated at both observed examination time points. For
every patient we extracted image patches at lesion regions longitudinally over
subsequent states of three different sizes (10 × 4 × 10, 20 × 4 × 20 and 30
× 4 × 30 voxels with a voxelspacing of 1.302 mm × 6 mm × 1.302 mm). To
obtain a higher number of patches for the predictor training, data augmenta-
tion is performed resulting in 18 different patches per lesion. To summarize, for
emerging lesions we obtain 720 patches for region 1 and 504 patches for region 2
and for growing lesions we created 1026 patches for region 1 and 810 patches for
region 2. Crossvalidation is used to generate test and training datasets, where a
testset consists of 18 patches of a single lesion including the volumes of different
orientation, which results in 40 folds for emerging lesions in region 1 and 28 in
region 2 and 57 folds for growing lesion in region 1 and 45 in region 2.

Evaluation Setup For the quantitative evaluation and for obtaining compara-
bility between the different tested setups, the Area Under the Curve (AUC) is
computed, based on the probability estimates of the local lesion risk predictor

4 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random
ForestClassifier.html [accessed 10th of June 2018]



Table 2. Summary results LRS performance

Lesion Type Patch Size Mean AUC Region 1 Mean AUC Region 2

Emerging 10 x 4 x 10 0.7425 0.769

20 x 4 x 20 0.7003 0.7144

30 x 4 x 30 0.6739 0.6874

Changing 10 x 4 x 10 0.7607 0.7221

20 x 4 x 20 0.7104 0.7491

30 x 4 x 30 0.6976 0.7096

for the test patch using scikit learn5. We used thresholding to obtain a pre-
dicted label for visualisation and comparison. We have to point out that an
exact matching of predicted label and subsequent annotation is not achievable,
given a pre-stage and not required since we aim to predict risk of lesion growth
or emergence and not to estimate exact segmentations of future lesions.

3.1 Evaluation Body Region 1

In Table 2 in column three the mean AUC for emerging and growing lesion types
for body region 1 are summarized. For every lesion type three different patch
sizes are evaluated. Figure 3 illustrates a prediction result for a growing lesion
of a region 1 acquisition. The test image (left) is a transformed image from
examination time point 003 to 004 using the longitudinal alignment approach
introduced in Section 2. The extracted patch of this image in the region of the

5 http://scikit-learn.org/stable/auto examples/model selection/plot roc.html [ac-
cessed 10th of June 2018]
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Patient 24 – Body Region 1 – Growing Lesion
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Fig. 3. Prediction of lesion growth from examination time point to time point in body
region 1. The predicted label is visualised in the second column, below the underly-
ing Local Lesion Risk Score probability map is shown and the manual annotation is
visualised in the third column.



lesion visible in the image I003 is visualised in the first row in the center, with
the predicted label in the second column and the annotation of the future lesion
position extracted from image I004 in the third column. In the second row the
predicted probability map of the local lesion risk score is visualised, where yellow
shows regions of high probability and blue of low probability.

3.2 Evaluation Body Region 2

Examination 002 Examination 003

Patient 5 – Body Region 2 – Emerging Lesion

I002 003 I003
Annotation (I004)Predicted Label

Patch of size 20x4x20 extracted from Image 𝐈𝟎𝟎𝟏 𝟎𝟎𝟒

Lesion Risk Score 
Probability Map

Fig. 4. Prediction of an emerging lesion from examination time point 002 to time point
003 in body region 2. The predicted label is visualised in column 2, below the under-
lying Local Lesion Risk Score probability map is shown and the manual annotation is
visualised in column 3.

In Table 2 in column four the mean AUC for emerging and growing lesion
types for body region 2 are summarized. For every lesion type three different
patch sizes are evaluated. Figure 4 illustrates a prediction result for an emerging
lesion of a region 2 acquisition. The test image (left) is a transformed image
from examination time point 002 to 003. The extracted patch of this image in
the region of the lesion visible in the target image I002 (right) is visualised, with
the predicted label in the second column and the annotation of the future lesion
position extracted from image I003 in the third column. In the second row the
predicted probability map of the local lesion risk score is visualised, where yellow
shows regions of high probability and blue of low probability.

3.3 Discussion

For both lesion types a decrease of the mean AUC is observable with increasing
patch size, where emerging lesions show a steeper decrease as growing lesions
in both bodyparts. Also growing lesions in the femur, knees or pelvis are better
predicted than those in the thoracic or abdominal body region.



4 Conclusion

In this work we present a local Lesion Risk Predictor for accessing and visual-
ising regions of high risk for bone lesions to emerge or to grow. We trained a
random forest predictor using lesion image patches and annotations of subse-
quent lesions states of the longitudinal MR T1 weighted dataset observed. The
main challenge here was to achieve an accurate longitudinal alignment of sub-
sequent examination time points of a patient. To our knowledge this is the first
attempt to predict bone infiltration patterns in MM using T1 weighted MR im-
ages. Current approaches focus on lesion detection (e.g. [11] for CT images) using
deep learning techniques. We decided to investigate a lesion predictor based on
a random forest classifier first, since its setup, parametrisation and evaluation
is simpler compared to deep learning approaches. However, we incorporated the
possibility to extend the proposed patch based approach to evaluate deep archi-
tectures for lesion prediction in the future. To this point prediction using the
introduced local lesion risk score is limited to image patches. For future work we
aim to adapt the proposed score to be able to predict probability maps for entire
volumes. Additionally, we will incorporate different modalities, and data from
additional bodyparts in the framework proposed to longitudinally model infil-
tration and also osseous destruction patterns caused by the progress of multiple
myeloma.

Acknowledgement

This work was supported by the Austrian Science Fund (FWF) project number
I2714-B31

References

1. M. A. Dimopoulos, J. Hillengass, S. Usmani, E. Zamagni, S. Lentzsch, F. E. Davies,
N. Raje, O. Sezer, S. Zweegman, J. Shah, A. Badros, K. Shimizu, P. Moreau,
C.S. Chim, J. J. Lahuerta, J. Hou, A. Jurczyszyn, H. Goldschmidt, P.r Sonneveld,
A. Palumbo, H. Ludwig, M. Cavo, B. Barlogie, K. Anderson, G. D. Roodman, S. V.
Rajkumar, B. G.M. Durie, and E. Terpos. Role of Magnetic Resonance Imaging
in the Management of Patients With Multiple Myeloma: A Consensus Statement.
Journ. of Clin. Oncology, 33(6):657–664, feb 2015.

2. B. G. M. Durie, R. A. Kyle, A. Belch, W. Bensinger, J. Blade, M. Boccadoro,
J. Anthony Child, R. Comenzo, B. Djulbegovic, D. Fantl, G. Gahrton, J. Luc
Harousseau, V. Hungria, D. Joshua, H. Ludwig, J. Mehta, A. Rodrique Morales,
G. Morgan, A. Nouel, M. Oken, R. Powles, D. Roodman, J.s San Miguel,
K. Shimizu, S. Singhal, B. Sirohi, P. Sonneveld, G. Tricot, B. Van Ness, and
Scientific Advisors of the Intern. Myeloma Foundation. Myeloma management
guidelines: a consensus report from the Scientific Advisors of the International
Myeloma Foundation. The Hematology Journal, 4(6):379–398, 2003.

3. M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M.
Smith. FSL. NeuroImage, 62(2):782–90, aug 2012.



4. J. K. Kloth, J.s Hillengass, K. Listl, K. Kilk, T. Hielscher, O. Landgren, S. Delorme,
H. Goldschmidt, H.-U. Kauczor, and M.-A. Weber. Appearance of monoclonal
plasma cell diseases in whole-body magnetic resonance imaging and correlation
with parameters of disease activity. Int. Journ. of Cancer, 135(10):2380–2386, nov
2014.

5. R. A. Kyle and S. V. Rajkumar. Multiple myeloma. Blood, 111(6):2962–72, mar
2008.

6. L. Lambert, P. Ourednicek, Z. Meckova, G. Gavelli, J. Straub, and I. Spicka.
Whole-body low-dose computed tomography in multiple myeloma staging: Supe-
rior diagnostic performance in the detection of bone lesions, vertebral compression
fractures, rib fractures and extraskeletal findings compared to radiography with
similar radiation. Oncology letters, 13(4):2490–2494, apr 2017.

7. M.-V. Mateos, M.-T. Hernández, P. Giraldo, J. de la Rubia, F. de Arriba, L. L.
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