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Abstract

The endovascular repair of a traumatic rupture of the
thoracic aorta - that would otherwise lead to the death of
the patient - is performed by delivering a stent-graft into the
vessel at the rupture location. The age range of the affected
patients is large and the stent-graft will stay in the body
for the remaining life. The technique is relatively new, and
no experience with regard to long-term effects, and dura-
bility exists. To predict long-term complications, such as
ruptures or destructive interactions with surrounding tissue
during the life of the patient, it is important to understand
the - rather intense and constant - movement of the stent-
graft during the cardiac cycle. A computed tomography
with heart gating (gated CT) acquires sequences that show
the region of the stent-graft at different time points. We ana-
lyze the motion of stent-grafts with a model based approach.
Stent-grafts are represented as sparse sets of axis points ex-
tracted from the gated CT, and motion patterns are cap-
tured by a minimum description length based group-wise
registration of the stent-graft at different time points. No
parameterization or a priori definition of the topology is
necessary, and highly variable elasticity properties in the
data volume can by accounted for by the sparse statistical
model, that captures correlations and motion components
of the stent-graft. We report results for deformation models
and registration accuracy for 5 patients.

*This research has been supported by the Region fle-de-France. It has
been partially supported by the Austrian Science Fund (P17083-N04).

1. Introduction

Model based approaches are widely used in medical im-
age analysis. They capture shape and texture variation or
temporal behavior of a specific structure or object, and uti-
lize this a priori knowledge to provide robust segmentation
while allowing for repeatable identification of specific land-
marks in the data [2, 12, 14, 17]. In most cases models are
built by manually annotating large numbers of training ex-
amples, which is tedious, may result in sub-optimal mod-
els due to noise in the manual annotation, and becomes un-
feasible for complex data sets. The task of model building
can also be formulated as that of establishing correspon-
dences for a set of landmarks across the training examples.
In this regard a body of work is focussed on tackling the
problem of autonomous model building - i.e., finding corre-
spondences across a training set in an un- or weakly super-
vised manner - from different directions. In [20] the tem-
poral continuity of image sequences is used to determine
correspondences. In a line of work correspondences are es-
tablished by one-to-many [15] or by group-wise registration
of entire images or volumes [4, 19]. Given a set of manual
continuous contour or surface annotations in [5, 6, 18] land-
marks are placed automatically along contours or surfaces
that are mapped to a circle or a sphere using minimum de-
scription length (MDL). The reference manifold limits the
approach to a topological class, that has to be chosen prior
to model building (i.e., a circle or a sphere).

These approaches hint that the learning itself offers a
variety of choices that influence the structure or behavior
that is captured from the training data. The building of a
model is closely related to the analysis process, as the train-



Figure 1. A stent graft in the thoracic aorta.

ing based on manually annotated training examples, or the
manual annotation of measurement points becomes unfea-
sible with high dimensional data and sequences depicting
anatomical structures. In this paper we will investigate the
capability of a model building approach to capture the de-
formation characteristics of a moving structure such as a
stent-graft during the cardiac cycle.

Medical background Blunt thoracic aortic ruptures can
occur at the level of the aortic isthmus. They are due to
deceleration or thoracic crushing mechanisms, as typically
the case in accidents, and result in a high pre-hospital death
rate of patients [21]. Progress in both surgical and intensive
care has been made, but the outcome of conventional sur-
gical management of acute rupture of the descending tho-
racic aorta is not satisfactory [1]. Because of the signifi-
cantly higher morbidity and mortality associated with open
surgery as opposed to endovascular repair [8], recently en-
dovascular stent-graft repair has been investigated as an al-
ternative, and a shift in the primary management of trau-
matic thoracic aortic rupture is taking place as reported in
[9]: in this retrospective study prior to 2002, 75% of 12
patients included in the study were treated by surgical re-
pair, 17% by medical management, and 8% by endovascu-
lar stents. Since 2002, 8% of 13 patients were treated by
surgical repair, 46% by medical management, and 46% by
endovascular stents.

Postoperative surveillance is crucial, because stent-grafts
are not specifically constructed for the indication of blunt
thoracic aortic ruptures. A study [10] concerning the mid-
term results (average of 32 month follow up) of endovascu-
lar repair demonstrated that the endovascular treatment of
blunt traumatisms of the descending thoracic aorta is a safe
and effective therapeutic method. In spite of very good re-
sults in the short- and mid-term, in particular the long-term

durability of this method of repair is unknown, but highly
relevant, since the patients are young on average [21]. Since
no long term studies are available due to the recency of the
method, and large randomized studies are difficult due to
the low number of patients, the functional analysis of the
movement of the stent-graft close to the heart is crucial to
understand stress caused to the structure, risks of rupture,
and potential ways of reinforcement. In Fig. 1 a 3D render-
ing of one frame of a gated CT sequence showing a stent-
graft is depicted. The visible stents (metal parts) seemingly
enclose the aorta. Inbetween the stents is a fabric, not visi-
ble in the CT, that reinforces the ruptured vessel wall.

Contribution The contribution of the paper is two-fold:
1. we propose a method for the analysis of the stent-graft
motion during the cardiac cycle based on gated CT se-
quences of the stent-graft and a minimum description length
driven group-wise registration method. The motion of the
stent-graft is extracted from the sequence of volumes and
the global and local deformation during the cycle is cap-
tured by means of a statistical deformation model that is
built during the registration. 2. We investigate the capability
of an approach based on an emerging statistical model that
is learned autonomously from un-annotated gated CT se-
quences, to accurately register the three-dimensional struc-
ture, and to capture its motion behavior. No a priori annota-
tion, or definition of topological properties of the structure
is necessary. The algorithm establishes correspondences
across the sequence by autonomously building a statistical
shape model of a sparse set of interest points. Instead of de-
forming dense texture maps or volume segments we search
for correspondences between finite lists of interest points
and local features in the data. This has several advantages:
(1) the use of specific local features enables the algorithm
to omit texture variations that yield no relevant information
for the model of e.g., the stent-graft. (2) The approach does
not rely on a mapping to a reference manifold, therefore it
is not constrained to an a priori topological class. (3) No
prior segmentation of the object is necessary, only the inter-
est point extraction method has to be chosen according to
the structure of interest, in order to get a sufficient number
of landmark candidates in the data.

The goal of this development is to enable algorithms to
autonomously grasp ever more complex medical imaging
data, such as thorax gated CT sequences, that have sur-
passed the limits of feasible supervised learning of models.
The development of methods, that learn the statistical prop-
erties, the topology and behavior of anatomical structure or
objects is crucial for taking advantage of the information
encompassed in the image data available today. The paper
is a contribution to this line of work.
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Figure 2. The matrix G holds the correspondence information by
assigning each landmark an interest point index in each volume.

2. Model building and group-wise registration

From a set of n volumes I;, ¢ = 1,2,...,n depicting
a structure or object - in our case: frames in a gated CT
sequence acquired during a cardiac cycle and depicting a
stent-graft - n sets of m; interest points are extracted. Ini-
tial correspondences for a subset of k of these points are
established by pairwise matching. Either points from a sin-
gle reference volume I; are matched to the remaining n — 1
images or points in subsequent image pairs are matched in
a pair-wise manner. This results in correspondences for k
landmarks {1, ...,I;}, which are encoded in a & x n ma-
trix G (Fig. 2). Each column represents an example volume,
and the entry Gj; € {1,...,m;} withj € {1,...,k}isthe
index of the interest point in volume I;, at which the land-
mark [; is positioned. Starting from these correspondences
groupwise registration is performed by minimizing a crite-
rion function that captures the compactness of the model
comprising the variation of landmark positions and local
feauture variation at the landmark positions in the different
training images.

The interest points in the images or volumes are treated
as landmark candidates. Each point (i,q) with ¢ €
{1,...,m;} is assigned its coordinate information p(i, q)
and local features f(i, ¢) (e.g., absorption coefficient, steer-
able filters). By assigning Gj; = ¢ the landmark /; in
image I, has position p;; = p(4,¢) and feature vector
fi; = £(4, ¢). During model building the matrix G is modi-
fied to minimize the criterion function, resulting in optimal
positions for each landmark in each image.

2.1. Interest points

The group-wise registration is operating on a finite set of
interest points in each volume. Stents are tubular structures
with good contrast. In the majority of the cases they exhibit
an absorption coefficient of more than 2000 Hounsfield
units in the CT data, while the surrounding tissue exhibits
a considerably lower coefficient. We extract interest points

that are located on the center line of the stents determined by
a skeletonization of the CTs thresholded at 2000 Hounsfield
units and weighted by its vesselness measure as proposed in
[7]. The resulting centerline voxels form a coarse net fol-
lowing the individual stents and their crossings.

To avoid artifacts due to this coarse sampling of the cen-
terline a dense interpolation of segments is performed in
each frame. Note that this does not track complete individ-
ual stents, but replaces the coarse sampling by a number of
segments with a higher number of points along their axis.
A number of those can form a single stent, or one segment
can stretch over more than a single stent, if two stents touch
each other. This results in a higher number of interest points
and allows for a more accurate detection of corresponding
positions along the axis.

To build the segments in a frame in our experiments a
random center line point qj is chosen and the closest neigh-
bor in a region with a radius of 2 voxels is detected and
assigned q3. After that the segment building proceeds by
searching in a 2 voxel radius region around q! where the
point closest to the curve tangent vector q; — q}_; is cho-
sen, fostering the choice of axis points along lines with low
curvature. Remaining points in the region are discarded and
the search proceeds until an empty neighborhood is encoun-
tered, and a new segment at a different position is started.
New segments are built until no centerline points that are
not part of a segment remain. The points in the segments
are then interpolated by a cubic spline and the final interest
points p;; are acquired by a dense sampling of the splines.
In Fig. 6 centerlines are depicted for stents in a sequence of
8 frames.

2.2. Criterion based on minimum description
length

The criterion function that is minimized during model
building comprises the compactness of a model that de-
scribes shape and local texture variation, and an elasticity
term that is used during the optimization, to account for the
small training set. The criterion is minimized by manipu-
lating G, that is by changing the correspondences between
landmarks and interest points, and thus changing the posi-
tions of the landmarks in individual volumes. By minimiz-
ing the criterion correspondences are determined, that result
in a more compact shape deformation model, and have sim-
ilar local appearance at the positions of a landmark across
the examples. The minimum description length criterion
accounts for the fact that the landmarks located on the stent
move in a highly correlated manner during the cardiac cy-
cle. The shape model compactness term allows for the de-
termination of correspondences along the stent centerlines,
since variation in these positions would inflate the model.
The criterion is independent from connectivity relations be-
tween the landmarks.



The shape model The shape model used is a standard lin-
ear multivariate Gaussian model [3]. Each of n shapes is
represented by the set of k£ landmarks in the corresponding
volume - i.e., the positions of the landmarks indicated by the
column of Gj; with 7 = 1,..., k. Each of the n shapes in
the training set can then be represented by a 3k dimensional
vector x; generated by concatenation of the 3-dimensional
coordinates of the points. The shape is modelled by a multi-
variate Gaussian with model mean X and covariance matrix
3. To estimate the density [13] PCA is applied on the set
{x;,7 = 1,...,n} creating a new coordinate system that
represents each of the vectors by

xi:i—i—Zajej. (1)
j=1

The modes e; are the eigenvectors of the covariance matrix
sorted according to decreasing eigenvalue ) ;. X is the mean
shape and n,, can be chosen to fulfill a given accuracy con-
straint. The eigenvalues \; correspond to the variance of
the data in the direction e;.

Compactness of the shape model The shape model com-
pactness criterion is based on minimum description length.
An optimal shape model should minimize the cost L of
communicating the model M itself and the data D (i.e. the
landmark positions) encoded with the model: L(D, M) =
L(M) + L(D|M).

For the multivariate Gaussian model modelling and
encoding costs can be calculated per dimension in the
eigenspace. For each dimension j of the eigenspace used
to encode the data we can apply Shannons theorem [16] to
the corresponding one-dimensional distribution. The corre-
sponding coefficients ag- are quantized by the step size Ay,
which is related to the voxel-size, and are strictly bounded
by R;. For each training sample x; the new discrete coor-
dinates a5 = kApy,, k € Z with —R;/2 < a; < R;/2 are
modeled by a Gaussian distribution with coefficient mean
value y1; = 0 and standard deviation o; = \/A;.

For each dimension j of the eigenspace used to encode
the data the transmission costs of the model (M, ) are the
quantized eigenvector, ¢; and the quantization parameter
for the direction e;. L(D|Me,,) is the cost of transmitting
the data i.e. the quantized coefficients aj of the training set
with respect to the direction e;.

The description length for the data encoded with an n,,
dimensional eigenspace is the sum of the transmission costs
for the data encoded using the eigenvectors (€;);=1,...n,
together with the cost of the residual error

p

Y (L(Mey) + L(DIMe,)) + R, )

j=1

where

L(Mej) + L(D|Mej) = 3)

L+ log, (P20 4 [log, 3 = (4)
J

—nlogy Apm + glogQ(QWJ?) + (5)
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with 0per = R/2 and 0yae = 2A5,. R is the resid-
ual error that remains after fitting the training set with the
model. An extensive derivation of the description length
calculation for Gaussian models is given in [5].

Since we do not represent the entire image content
but only a sparse set of landmarks and their variation
a normalization term has to be introduced, that pro-
hibits the landmarks from collapsing to a single posi-
tion. The shape term is normalized by the entropy of
the landmark positions in the individual examples L,..; =
Zi=1,...,N entropy;=1,...x(P:;) and captures the gain of
compactness achieved by the model in contrast to the com-
plexity of the original data. The normalization is not essen-
tial to the quality of the model, but fosters the covering of
the training examples by the model landmarks. The final
shape model criterion is Cs = L(Mg) + L(Dg|Mg) +
Rs — Lref, where L(Mg) is the cost of communicating
the shape model, L(Dg|Mg) is the cost of the shape data
encoded with help if the model, and R g is a penalty for the
residual error not captured by the model.

Local appearance The image content is captured by lo-
cal descriptors that extract features at the interest point
positions in the data examples. For a landmark [; the
component-wise median of the individual entries in the fea-
ture vectors f;; for ¢ = 1,...,n from the landmark po-
sitions in all training images is calculated resulting in the
center fj. The local appearance is then modeled by a Gaus-
sian centered at fj, and the description length is utilized
as criterion for the compactness of the feature model M
analogously to the shape model. Hence the criterion is
Cr = L(Mr) + L(Dy|M71) + Ry, where L(Mr) is the
cost for the model, L(Dr|Mr) the cost of the local features
encoded with the model, and R a penalty for the residual
error. For the stent sequence the absorption coefficient at the
landmark positions was used as local appearance feature.

Elasticity Since at the beginning of the model building
the model has poor generalization behavior and a lim-
ited number of training examples can result in sub-optimal
shape models an elasticity cost term is introduced to con-
strain the deformations during the optimization. For this we
used C = |Vd(x)|?, where d are the displacements of the



Genetic Algorithm Search
Images

123KS576010m

Landmar
N
w
£
@
o
~N
=]
0
=
o
—Q
o
=
N
—
w
=
~
—-
@
-
o

Each row holds the indices
of the interest points the
landmark is assigned

in the individual training
images

12346438 4
4050 56296
389341226

Direct Search

——— ———
—— ——
e — E——
e £ —

Project single
example into
the model

e 1 —
—  ——
———————————— |
Pick an example

— Coe)— i

Build model from remaining examples .
Search for best candidates for

landmarks in the neighborhood
of projection, and exchange
elements in G accordingly.

Figure 3. Schemes to optimize the criterion function: the corre-
spondence matrix is manipulated either by a genetic algorithm
during the initial coarse search or by a direct search exploiting the
shape model to make predictions for the positions of landmarks
in one volume based on a model built from the remaining other
examples.

landmarks x throughout the training set with regard to a lo-
cal neighborhood, that helps avoiding a degenerate model.

Criterion function The final criterion function encom-
passes the compactness of models for shape and local tex-
ture information and the elasticity term:

C =Cs+Cr + a(t)Cs. 7

The weight «(t) controls the influence of the elastic-
ity, and is gradually decreased during optimization. During
model building the criterion function is minimized by alter-
ing the matrix G that holds the correspondences between
the landmarks and the interest points in the training images.
A change of a single entry in G corresponds to a change of
the position of a landmark in one image from one to another
interest point location.

2.3. Optimization

Initialization For each image interest points and corre-
sponding local features are extracted. The group-wise reg-
istration can by initialized by either a one-to-many regis-
tration of a subset of interest point in the examples I; to
the remaining n — 1 examples {I,...,L,}, or in the case
of a temporal sequence of gated CT volumes captured dur-
ing the cardiac cycle, by a pairwise matching of subsequent
frames. We applied the following coarse initialization: after
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Figure 4. Landmarks on the stent-graft and the first two modes of
variation for a shape model. a. and b. are the first and second mode
after initialization, c¢. and d. are the modes after optimization of
the MDL criterion.

an alignment that translates the interest point sets to have
a common centroid, a random sub-set of interest points is
tracked through the sequence by searching for the closest
point on the centerline segments in the subsequent frame.
This results in the initial correspondence matrix Gy,¢-

Optimizing the Criterion function After the coarse ini-
tialization of the correspondences the criterion function is
minimized by updating the correspondence matrix G. In
contrast to the initial pair-wise registration this takes advan-
tage of the systematic deformation of the stent graft during
the cardiac cycle, since the landmarks situated on the indi-
vidual stent segments move in a correlated manner.

For an efficient optimization a neighborhood concept in
the space of possible landmark positions has to be used.



In [5] and [6] contours or surfaces of objects are mapped
onto a circle or sphere. In contrast to this parameterization
we employ k-D trees to efficiently search for candidates
close to the current landmark position, while being inde-
pendent from a parameterization reference. This enables
the algorithm to adapt to complex and even changing topo-
logical configurations not defined a priori. In the case of
stent grafts it accounts for the fact that due to stents touch-
ing each other in the moving structure the topology is not
fixed. We can optimize the criterion function with two suc-
cessive algorithms:

Genetic algorithm search If the initialization exhibits
coarse outliers, first the criterion can be optimized by a ge-
netic algorithm [11], with a set of correspondence matri-
ces G serving as genomes of intermediate solutions (indi-
viduals), making a straight-forward implementation of mu-
tations and cross-over functions possible by either altering
individual entries in the matrices, or by combining two ma-
trices i.e., using parts of both matrices to generate a new
individual. (see Fig. 3 upper part for a scheme of optimiza-
tion with a genetic algorithm).

Fine search After the genetic algorithm converges a fine
direct search is performed. It exploits properties of the cri-
terion to increase speed, and provide for robustness (Fig. 3
lower part). During an iterative process a single example is
chosen, a model is build from the remaining examples and
the landmarks of the excluded example are projected into
this model. The criterion function is calculated for interest
points in the vicinity of the landmark position suggested by
the model, and the landmark is moved to the position with
lowest cost by altering the corresponding entry in the corre-
spondence matrix. This is similar to [4] but no parameteri-
zation of the landmark space is used. A search by evaluating
the criterion function for small displacements of the current
landmark positions is possible but results in far slower con-
vergence. The optimization results in correspondences for a
set of landmarks in the volumes and an according statistical
model of shape variation.

3. Motion analysis

The analysis of the stent deformation during the cardiac
cycle is performed by means of the shape model that results
from the group-wise registration. For each landmark (for
the experiments sets of appr. 800 landmarks were used)
positions in all volumes in the sequence are known. We
used the following three measurements to capture the de-
formation behavior: 1. the modes of variation of the statis-
tical shape model. They capture the correlations between
landmark movements and reflect their extent in the data
set. 2. Displacements of individual landmarks during the
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Figure 5. Deformation of the stent-graft: a.: Displacement of the
landmarks on the stents, the color corresponds to the standard de-
viation in the first principal displacement direction (red-high, blue-
low); b.: compactness of local shape models, the color corresponds
to the description length for shape models capturing the deforma-
tion of local configurations of 10 landmarks (red-high, blue-low).

sequence reflect the absolute movement of the stent-graft
in the anatomical environment. Fig.5 (a) shows the color
coded first principle axis of landmark displacement. 3. The
compactness of local shape models encompassing a small
set of landmarks in a local neighborhood. For each land-
mark the n closest landmarks are chosen and a shape model
of their variation is built. Before local model building these
landmark sub-sets are aligned, that is, rotation and transla-
tion differences are discarded. The remaining deformation
is modeled and the description length of the shape model
is calculated as described in Sec2.2. This gives an indica-
tion about the local complexity of deformation. Fig.5 (b)
shows the first principle axes of landmark displacement
color coded with the local complexity. A more detailed de-
scription is provided in the experiment section. Although
there is a visible relation between the two features, the lo-
cal complexity is better suited to show regions of poten-
tial stress to the material, since it is not affected by large
but evenly distributed displacements (of e.g., an entire stent
section) in the sequence.

4. Experiments

Set-up We performed the group-wise registration on
gated CT sequences for 5 cases. For each case 8§ frames
of the gated CT sequence showing subsequent time-points
during the cardiac cycle were available. The CT volumes
have an in-slice resolution of 0.68 mm x 0.68 mm and
a slice thickness of 0.625 mm. A contrast agent was ap-
plied but was not used for analysis of the stent-graft. Stent
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Figure 6. Center lines of the stents in the sequence. The first princi-
pal displacement axes of the landmarks are depicted and displace-
ment is color coded. On the left two regions with particularly high
and low deformation are shown.

center-lines were extracted and the group-wise registration
was performed on each sequence. The visible stent had a
diameter in the range of 1-2 voxels (vx), and center-lines
were sampled with an average distance of 0.2 vx between
neighboring points. The dense sampling allowed for a more
accurate registration of positions along the contour. After
registration individual displacements of the landmarks, the
model modes and the local compactness of the deformation
model were evaluated as described in Sec. 3.

To obtain quantitative results for the registration qual-
ity we used the first frame as reference frame and propa-
gated the stent centerlines to the remaining frames. In Fig.7
an example of this comparison is depicted. The stent in
the reference frame is drawn in blue, the test frame stent
is green and the reference frame stent deformed according
to the deformation field determined by the landmark cor-
respondences is drawn in red. A perfect registration would
cause the green and red line to coincide. The cyan lines con-
nect corresponding landmarks in the two frames. We report
mean and median error between propagated center lines and
actual center lines for each frame.

Results In Fig. 4 the effect of the MDL based registration
is illustrated. For the points located on the stent-graft the
first two modes of shape variation are depicted before and
after optimization. After initialization both modes capture
variation along and orthogonal to the stents. After the opti-
mization the first mode captures the major part of the varia-
tion and reflects the highly correlated movements of points
close to each other on the stents. Note that only a small

part of displacements parallel to the stent axes remains. The
second mode of the resulting model has far lower variation
than before optimization, since most of the deformation is
represented by the first mode. In Fig.5 the deformation is
visualized by the first principal axis of displacements for
individual landmarks. In Fig. 5 (a) colors correspond to the
standard deviation of landmark positions along this axis. In
the five cases for the standard deviation in the first prin-
cipal direction minimum values ranged from 0.04 to 0.26
vx and maximal values from 2.40 to 2.88 vx. The mean
standard deviation in the second principal direction was be-
low 53% of the standard deviation in the first one in all
cases. In Fig. 6 examples for regions with high and low dis-
placements are depicted. Gray lines are the stent axes for
8 frames. The colors code the deformation analogously to
Fig.5 (a). In Fig. 5 (b) colors correspond to the compactness
of local shape models built from the 10 closest landmarks
across the sequence. They reflect local deformations better
then the global displacement of landmarks.

Mean Median
Patient 1  0.52 0.26
Patient2  0.77 0.48
Patient 3 0.70 0.42
Patient4  0.79 0.50
Patient5 0.52 0.22

Table 1. Registration errors (voxels): distance between center
line points propagated based on the deformation determined by
the landmark correspondences and actual center line points for 5
cases.

In Tab. 1 registration accuracy results are reported. For
the 5 sequences, each consisting of 8 frames the stent axes
were propagated from reference frame to the remaining
frames based on the deformation field defined by the land-
mark correspondences. In each frame the distance between
extracted and propagated stent axis was measured. Fig.7
shows the position of a stent-segment in two frames and the
result of propagation based on the landmarks. In Tab. 1 the
mean, and median errors of registration are reported.

5. Conclusion

In this paper we investigate an MDL based autonomous
model building approach and its application to motion anal-
ysis of stent-grafts in the thoracic aorta during the cardiac
cycle. Since no retrospective studies of the long-term be-
havior of stent-grafts in this region with constant deforma-
tion are available, the understanding of stent-graft deforma-
tion is relevant, to predict risks, and to reinforce stent-grafts
at specific regions where high deformations occur. The
group-wise registration finds correspondences for a set of
landmarks in the volumes of the gated CT sequence depict-
ing the stent-graft at different time points in the cardiac cy-
cle. The resulting landmark correspondences and the shape



Figure 7. Center lines for two frames: blue and green, and land-
mark correspondences indicated by the connecting lines. The red
center line is the result of registering the blue line based on the
deformation determined by the landmarks. For the accuracy eval-
uation the distances between these propagated registration results
(red) and the center lines in the individual frames (green) were
computed. The distance between the blue and green line in the
center of the image is approximately 3 voxels.

model can be used to assess the deformation. The regis-
tration does not require a prior definition of topology and
works on sparse sets of interest points, that are located on
the stents axes. Future work will focus on the simulation
of the fabric inbetween the stents, the separation between
different spatial motion components in the data, and an im-
proved separation between background and stent. Of par-
ticular interest is the relation between the purely statisti-
cal assessment of the deformation described in this paper
and physical models capturing material properties and high
level knowledge about the observed structures, and their fu-
ture integration.
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